Skip to main content
Log in

HPV-assoziierte Plattenepithelkarzinogenese

HPV-associated squamous cell carcinogenesis

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Infektionen mit High-risk- (HR-) Typen humaner Papillomaviren (HPV) werden für die Entstehung von 7–8% aller Malignome verantwortlich gemacht. Neben dem Zervixkarzinom ist v. a. das Plattenepithelkarzinom der Anogenitalregion und des Oropharynx HR-HPV assoziiert. Die HPV-Infektion erfolgt in aller Regel durch sexuellen Kontakt. Für die Entdeckung der ätiologischen Bedeutung von HR-HPV-Infektionen in der Entstehung des Zervixkarzinoms wurde Harald zur Hausen 2008 mit dem Nobelpreis für Medizin ausgezeichnet. Mittlerweile sind prophylaktische Impfstoffe gegen HPV-16 und HPV-18, die beiden häufigsten HR-Typen, verfügbar. Auf molekularer Ebene stellt die persistierende HR-HPV-Infektion den zentralen Risikofaktor für die Entstehung HPV-assoziierter Neoplasien dar. Im Rahmen dieser Infektionen sorgt die kontinuierliche Expression der viralen Onkogene E6 und E7 für eine Inaktivierung der Zellzykluskontrolle. In den betroffenen Zellen induziert dies eine unbeschränkte Proliferationsfähigkeit und Apoptoseresistenz, führt aber auch zur Akquisition von Mutationen und genomischer Instabilität, die schließlich in der malignen Transformation und Ausbildung eines Plattenepithelkarzinoms münden können.

Abstract

About 7–8% of all human cancers are thought to be related to infections with high-risk (HR) human papilloma virus (HPV). Besides cervical cancer, especially squamous cell carcinomas of the anogenital and oropharyngeal regions are associated with HR-HPV. Transmission of HPV is due to sexual activity. Harald zur Hausen was awarded in 2008 with the Nobel price in medicine for the establishment of a causal link between certain HPV infections and cervical cancer. Meanwhile potent prophylactic vaccines are available to prevent infections with HPV-16 and HPV-18, the two most frequently observed HR HPV types worldwide. On molecular grounds a persistent HPV infection is the central risk factor for the development of HPV-associated neoplasias. Continued expression of the viral E6 and E7 oncogenes disrupts cell cycle control mechanisms in infected cells, thereby gaining limitless proliferative capacity and resistance against apoptotic signals. However acquisition of mutations and genomic instability might cause malignant transformation in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R et al (2006) In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 19:481–491

    Article  PubMed  CAS  Google Scholar 

  2. Bedell MA, Hudson JB, Golub TR et al (1991) Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol 65:2254–2260

    PubMed  CAS  Google Scholar 

  3. Beglin M, Melar-New M, Laimins L (2009) Human papillomaviruses and the interferon response. J Interferon Cytokine Res 29:629–635

    Article  PubMed  CAS  Google Scholar 

  4. Bodily J, Laimins LA (2011) Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol 19:33–39

    Article  PubMed  CAS  Google Scholar 

  5. Culp TD, Budgeon LR, Marinkovich MP et al (2006) Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80:8940–8950

    Article  PubMed  CAS  Google Scholar 

  6. Day PM, Lowy DR, Schiller JT (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307:1–11

    Article  PubMed  CAS  Google Scholar 

  7. Day PM, Baker CC, Lowy DR et al (2004) Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A 101:14252–14257

    Article  PubMed  CAS  Google Scholar 

  8. Day PM, Thompson CD, Buck CB et al (2007) Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81:8784–8792

    Article  PubMed  CAS  Google Scholar 

  9. De Roda Husman AM, Walboomers JM, van den Brule AJ et al (1995) The use of general primers GP5 and GP6 elongated at their 3‘ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76:1057–1062

    Article  Google Scholar 

  10. De Villiers EM, Fauquet C, Broker TR et al (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  Google Scholar 

  11. Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110:525–541

    Google Scholar 

  12. Duensing S, Munger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109:157–162

    Article  PubMed  CAS  Google Scholar 

  13. Evander M, Frazer IH, Payne E et al (1997) Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 71:2449–2456

    PubMed  CAS  Google Scholar 

  14. Fox PA (2006) Human papillomavirus and anal intraepithelial neoplasia. Curr Opin Infect Dis 19:62–66

    Article  PubMed  Google Scholar 

  15. Frazer IH (2009) Interaction of human papillomaviruses with the host immune system: a well evolved relationship. Virology 384:410–414

    Article  PubMed  CAS  Google Scholar 

  16. Garnett TO, Duerksen-Hughes PJ (2006) Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 151:2321–2335

    Article  PubMed  CAS  Google Scholar 

  17. Ghittoni R, Accardi R, Hasan U et al (2010) The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40:1–13

    Article  PubMed  CAS  Google Scholar 

  18. Gillison ML, Koch WM, Capone RB et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92:709–720

    Article  PubMed  CAS  Google Scholar 

  19. Hawley-Nelson P, Vousden KH, Hubbert NL et al (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8:3905–3910

    PubMed  CAS  Google Scholar 

  20. Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97

    Article  PubMed  CAS  Google Scholar 

  21. Howie HL, Katzenellenbogen RA, Galloway DA (2009) Papillomavirus E6 proteins. Virology 384:324–334

    Article  PubMed  CAS  Google Scholar 

  22. Jeon S, Lambert PF (1995) Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A 92:1654–1658

    Article  PubMed  CAS  Google Scholar 

  23. Kamper N, Day PM, Nowak T et al (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80:759–768

    Article  PubMed  Google Scholar 

  24. Kaur P, Mcdougall JK (1988) Characterization of primary human keratinocytes transformed by human papillomavirus type 18. J Virol 62:1917–1924

    PubMed  CAS  Google Scholar 

  25. Kines RC, Thompson CD, Lowy DR et al (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A 106:20458–20463

    Article  PubMed  CAS  Google Scholar 

  26. Kjaer S, Hogdall E, Frederiksen K et al (2006) The absolute risk of cervical abnormalities in high-risk human papillomavirus-positive, cytologically normal women over a 10-year period. Cancer Res 66:10630–10636

    Article  PubMed  CAS  Google Scholar 

  27. Klaes R, Woerner SM, Ridder R et al (1999) Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res 59:6132–6136

    PubMed  CAS  Google Scholar 

  28. Klussmann JP, Dinh S, Guntinas-Lichius O et al (2004) HPV-associated tonsillar cancer. An update. HNO 52:208–218

    Article  PubMed  CAS  Google Scholar 

  29. Lont AP, Kroon BK, Horenblas S et al (2006) Presence of high-risk human papillomavirus DNA in penile carcinoma predicts favorable outcome in survival. Int J Cancer 119:1078–1081

    Article  PubMed  CAS  Google Scholar 

  30. Madsen BS, Jensen HL, Van Den Brule AJ et al (2008) Risk factors for invasive squamous cell carcinoma of the vulva and vagina – population-based case-control study in Denmark. Int J Cancer 122:2827–2834

    Article  PubMed  CAS  Google Scholar 

  31. Mcbride AA, Oliveira JG, Mcphillips MG (2006) Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle 5:1499–1502

    Article  PubMed  CAS  Google Scholar 

  32. Mccance DJ, Kopan R, Fuchs E et al (1988) Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A 85:7169–7173

    Article  PubMed  CAS  Google Scholar 

  33. Middleton K, Peh W, Southern S et al (2003) Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 77:10186–10201

    Article  PubMed  CAS  Google Scholar 

  34. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  PubMed  CAS  Google Scholar 

  35. Munger K, Basile JR, Duensing S et al (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898

    Article  PubMed  CAS  Google Scholar 

  36. Munoz N, Bosch FX, De Sanjose S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  37. Nees M, Geoghegan JM, Hyman T et al (2001) Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 75:4283–4296

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen CL, Munger K (2008) Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology 380:21–25

    Article  PubMed  CAS  Google Scholar 

  39. Parkin DM, Bray F (2006) Chapter 2: The burden of HPV-related cancers. Vaccine 24 (Suppl 3):11–25

    Article  Google Scholar 

  40. Pei XF, Meck JM, Greenhalgh D et al (1993) Cotransfection of HPV-18 and v-fos DNA induces tumorigenicity of primary human keratinocytes. Virology 196:855–860

    Article  PubMed  CAS  Google Scholar 

  41. Petersen I, Klein F (2008) HPV in non-gynecological tumors. Pathologe 29 (Suppl 2):118–122

    Article  PubMed  Google Scholar 

  42. Pyeon D, Pearce SM, Lank SM et al (2009) Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 5:e1000318

    Article  PubMed  Google Scholar 

  43. Resnick RM, Cornelissen MT, Wright DK et al (1990) Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst 82:1477–1484

    Article  PubMed  CAS  Google Scholar 

  44. Richards RM, Lowy DR, Schiller JT et al (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A 103:1522–1527

    Article  PubMed  CAS  Google Scholar 

  45. Richardson H, Kelsall G, Tellier P et al (2003) The natural history of type-specific human papillomavirus infections in female university students. Cancer Epidemiol Biomarkers Prev 12:485–490

    PubMed  Google Scholar 

  46. Roberts JN, Buck CB, Thompson CD et al (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13:857–861

    Article  PubMed  CAS  Google Scholar 

  47. Schiffman M, Herrero R, Desalle R et al (2005) The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337:76–84

    Article  PubMed  CAS  Google Scholar 

  48. Schiffman M, Castle PE, Jeronimo J et al (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907

    Article  PubMed  CAS  Google Scholar 

  49. Schiller JT, Day PM, Kines RC (2010) Current understanding of the mechanism of HPV infection. Gynecol Oncol 118:S12–S17

    Article  PubMed  CAS  Google Scholar 

  50. Selinka HC, Giroglou T, Sapp M (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299:279–287

    Article  PubMed  CAS  Google Scholar 

  51. Selinka HC, Florin L, Patel HD et al (2007) Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81:10970–10980

    Article  PubMed  CAS  Google Scholar 

  52. Shin MK, Balsitis S, Brake T et al (2009) Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res 69:5656–5663

    Article  PubMed  CAS  Google Scholar 

  53. Smith JS, Lindsay L, Hoots B et al (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 121:621–632

    Article  PubMed  CAS  Google Scholar 

  54. Snijders PJ, Steenbergen RD, Heideman DA et al (2006) HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 208:152–164

    Article  PubMed  CAS  Google Scholar 

  55. Sotlar K, Diemer D, Stubner A et al (2005) Detection of high-risk human papillomavirus (HPV) E6 and E7 oncogene transcripts increases the specificity of the detection of a cervical intraepithelial neoplasia (CIN). Verh Dtsch Ges Pathol 89:195–200

    PubMed  CAS  Google Scholar 

  56. Strickler HD, Burk RD, Fazzari M et al (2005) Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst 97:577–586

    Article  PubMed  Google Scholar 

  57. Trunk MJ, Wentzensen N, von Knebel Doeberitz M (2005) Molecular pathogenesis of cervical cancer and its first steps. Pathologe 26:283–290

    Article  PubMed  CAS  Google Scholar 

  58. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  59. Woodman CB, Collins S, Winter H et al (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357:1831–1836

    Article  PubMed  CAS  Google Scholar 

  60. Zur Hausen H (2009) Papillomaviruses in the causation of human cancers – a brief historical account. Virology 384:260–265

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sotlar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assmann, G., Sotlar, K. HPV-assoziierte Plattenepithelkarzinogenese. Pathologe 32, 391–398 (2011). https://doi.org/10.1007/s00292-011-1442-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-011-1442-2

Schlüsselwörter

Keywords

Navigation