Skip to main content
Log in

Molekulare Methoden in der Sarkomdiagnostik

Molecular methods in the diagnosis of sarcoma

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die Nutzung moderner molekularbiologischer Methoden hat in den letzten Jahren in der Sarkomdiagnostik an Bedeutung gewonnen. Jede der hier beschriebenen analytischen Methoden hat ihre spezifischen Vorteile, aber auch Anforderungen an das Untersuchungsmaterial. Zytogenetische Screening-Methoden geben Auskunft über das gesamte Genom, Nachteil ist der Bedarf an Frischgewebe. Durch Fluoreszenz-in-situ-Hybridisierung und Real-time-Polymerase-Ketten-Reaktion können spezifische genetische Ereignisse, wie Translokationen im Ewing-Sarkom, im Synovialsarkom oder im alveolären Rhabdomyosarkom in frischen und formalinfixierten Geweben detektiert werden, aber auch Genamplifikationen im hochdifferenzierten und dedifferenzierten Liposarkom oder strahleninduzierten Angiosarkom sowie Deletionen im Rhabdoidtumor und im hochdifferenzierten spindelzelligen Liposarkom. Molekularbiologische Methoden wie Sanger-Sequenzierung, Pyrosequenzierung und die hochauflösende Schmelzpunktanalyse können zur Aufdeckung spezifischer molekularer Aberrationen auf Genebene beitragen. Dieser Artikel gibt eine Übersicht über die wichtigsten molekularbiologischen Methoden, die zurzeit in der Sarkomdiagnostik genutzt werden, ihre Bedeutung für die Differenzialdiagnose dieser Tumoren und zeigt Anwendungsbeispiele auf.

Abstract

The use of modern molecular techniques has gained importance in the diagnosis of sarcomas in recent years. Each of the analytical methods discussed here has its unique advantages and specific requirements. Cytogenetic screening methods which provide genome-wide information depend on the availability of fresh tissue. With the aid of fluorescence in situ hybridization and RT-polymerase chain reaction, specific events such as translocations in Ewing sarcoma, synovial sarcoma or alveolar rhabdomyosarcoma, as well as gene amplifications in well-differentiated and dedifferentiated liposarcoma or radiation-induced angiosarcoma and deletions in rhabdoid tumors or well-differentiated spindle cell liposarcoma can be detected in fresh and formalin fixed tissues. Molecular methods including Sanger sequencing, pyrosequencing and high resolution melting provide information about specific molecular aberrations on gene level. Here we review the most important molecular techniques currently used in sarcoma diagnosis, describe their relevance for differential diagnosis and point out specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Fletcher C, Unni K, Mertens F (2002) Pathology and genetics of tumours of soft tissue and bone. Kleihues P, Sobin L (Hrsg) WHO classification of tumours. IARC, Lyon

  2. Sandberg AA, Bridge JA (1994) The cytogenetics of bone and soft tissue tumours. RG Landes CRC Press, Austin

  3. Pinkel D, Gray J, Trask B et al (1986) Cytogenetic analysis by in situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 51:151–157

    CAS  PubMed  Google Scholar 

  4. Friedrichs N, Kriegl L, Poremba C et al (2006) Pitfalls in the detection of t(11;22) translocation by fluorescence in-situ hybridization and PCR – a single-blinded study. Diagn Mol Pathol 15:83–89

    Article  CAS  PubMed  Google Scholar 

  5. Weaver J, Downs-Kelly E, Goldblum JR et al (2008) Fluorescence in situ hybridization for MDM 2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol 21:943–949

    Article  CAS  PubMed  Google Scholar 

  6. Varella-Garcia M, Diebold J, Eberhard DA et al (2009) EGFR fluorescence in situ hybridisation assay: guidelines for application to non-small-cell lung cancer. J Clin Pathol 62:970–977

    Article  CAS  PubMed  Google Scholar 

  7. Schröck E, Manoir S du, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  PubMed  Google Scholar 

  8. Tanke HJ, Wiegant J, Van Gijlswijk RP et al (1999) New strategy for multi-colour fluorescence in situ hybridization: COBRA: combined binary ration labelling. Eur J Hum Genet 7:2–11

    Article  CAS  PubMed  Google Scholar 

  9. Speicher MR, Gwyn Ballard S, Ward DC et al (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  CAS  PubMed  Google Scholar 

  10. Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  11. Dandachi N, Dietze O, Hauser-Kronberger C (2002) Chromogenic in situ hybridization: A novel approach to a practical and sensitive method for the detection of HER2 oncogene in archival human breast carcinoma. Lab Invest 82:1007–1014

    CAS  PubMed  Google Scholar 

  12. Carbone A, Botti G, Gloghini A et al (2008) Delineation of HER2 gene status in breast carcinoma by silver in situ hybridization is reproducible among laboratories and pathologists. J Mol Diagn 10:527–536

    Article  PubMed  Google Scholar 

  13. Nitta H, Hauss-Wegrzyniak B, Lehrkamp M et al (2008) Development of automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence in situ hybridization (FISH). Diagn Pathol 3:41–53

    Article  PubMed  Google Scholar 

  14. Ladanyi M, Bridge JA (2000) Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol 31:532–538

    Article  CAS  PubMed  Google Scholar 

  15. Mertens F, Dal Cin P, De Wever I et al (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol 190:31–38

    Article  CAS  PubMed  Google Scholar 

  16. Gulley ML, Kaiser-Rogers KA (2009) A rational approach to genetic testing for sarcoma. Diagn Mol Pathol 18:1–10

    Article  CAS  PubMed  Google Scholar 

  17. Binh M, Sastr-Garau X, Guillou L et al (2005) MDM 2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 29:1340–1347

    Article  PubMed  Google Scholar 

  18. Reed D, Shen Y, Shelat A et al (2010) Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 285:10786–10796

    Article  CAS  PubMed  Google Scholar 

  19. Barr FG, Duan F, Smith LM et al (2009) Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes Chromosomes Cancer 48:661–672

    Article  CAS  PubMed  Google Scholar 

  20. Manner J, Radlwimmer B, Hohenberger P (2010) MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176:34–39

    Article  CAS  PubMed  Google Scholar 

  21. Bourdeaut F, Freneaux P, Thuille B et al (2007) hSNF5/INI1-deficient tumours and rhabdoid tumours are convergent but not fully overlapping entities. J Pathol 211:323–330

    Article  CAS  PubMed  Google Scholar 

  22. Mentzel T, Palmedo G, Kuhnen C (2010) Well-differentiated spindle cell liposarcoma („atypical spindle cell lipomatous tumor“) does not belong to the spectrum of atypical lipomatous tumor but has a close relationship to spindle cell lipoma: clinicopathologic, immunohistochemical, and molecular analysis of six cases. Mod Pathol 23:729–736

    Article  CAS  PubMed  Google Scholar 

  23. Bayani J, Squire JA (2004) Fluorescence in situ hybridization. In: Bonifacio JS, Dasso M, Harford JB et al (Hrsg) Current protocols in cell biology. John Wiley, New York, Chap 22: Unit 22.4

  24. Merkelbach-Bruse S, Dietmaier W, Füzesi L (2010) Pitfalls in mutational testing and reporting of common KIT and PDGFRA mutations in gastrointestinal stromal tumors. BMC Med Genet 11:106–119

    Article  CAS  PubMed  Google Scholar 

  25. Sirvent N, Coindre JM, Maire G et al (2007) Detection of MDM 2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocyte lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31:1476–1489

    Article  PubMed  Google Scholar 

  26. Imagama S, Abe A, Suzuki M et al (2007) LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 79:25–31

    Article  CAS  PubMed  Google Scholar 

  27. Lewis TB, Coffin CM, Bernard PS (2007) Differentiating Ewing’s sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol 20:397–404

    Article  CAS  PubMed  Google Scholar 

  28. Marchetti A, Felicioni L, Buttitta F (2006) Assessing EGFR mutations. N Engl J Med 354:526–527

    Article  CAS  PubMed  Google Scholar 

  29. Wardelmann E; Buettner R; Merkelbach-Bruse S et al (2007) Mutation analysis of gastrointestinal stromal tumors: Increasing significance for risk assessment and effective targeted therapy. Virchows Arch 451:743–749

    Article  PubMed  Google Scholar 

  30. Lazar AJ, Tuvin D, Hajibashi S (2008) Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173:1518–1527

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Merkelbach-Bruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkelbach-Bruse, S., Wardelmann, E., Künstlinger, H. et al. Molekulare Methoden in der Sarkomdiagnostik. Pathologe 32, 24–31 (2011). https://doi.org/10.1007/s00292-010-1395-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-010-1395-x

Schlüsselwörter

Keywords

Navigation