Skip to main content
Log in

Rezeptor-Tyrosinkinasen in Hodgkin-Lymphomen als mögliche Angriffspunkte neuer Therapieoptionen

Receptor tyrosine kinases in Hodgkin lymphoma as possible therapeutic targets

  • Übersichten
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Hodgkin-Lymphome (HL) sind die häufigsten nodalen Lymphome in Europa. Die von B-Zellen abstammenden Hodgkin-Reed-Sternberg- (HRS-) Zellen zeigen einen nahezu vollständigen Verlust ihres B-Zell-Phänotyps. In etwa 40% aller HL ist das Epstein-Barr-Virus (EBV) nachweisbar. Für Vorläufer der HRS-Zellen stellt EBV wahrscheinlich einen Schutz vor Apoptose dar. Histologisch finden sich nur einzelne HRS-Zellen in einem gemischtzellulären entzündlichen Infiltrat. Das Zusammenspiel zwischen den HRS-Zellen und diesem zellulären Infiltrat ist für HL von zentraler Bedeutung, die sich in einer Vielzahl von parakrinen Aktivierungsmechanismen widerspiegelt. Daneben sind auch zahlreiche autokrine Stimulationsmechanismen in HRS-Zellen bekannt. Die aberrante Expression und Aktivierung 7 verschiedener Rezeptor-Tyrosinkinasen in HL stellt dabei einen Aktivierungsmechanismus von besonderem Interesse dar, da eine Reihe verschiedener Antikörper und niedermolekularer Substanzen zur Inhibition von Rezeptor-Tyrosinkinasen bereits klinisch zur Therapie verschiedenster Tumorentitäten eingesetzt wird. Die Blockade von Rezeptor-Tyrosinkinasen könnte daher auch in HL eine neue Therapieoption darstellen.

Abstract

Hodgkin lymphoma (HL) is the most frequent nodal lymphoma in Europe. The B-cell derived Hodgkin-Reed Sternberg (HRS) cells are nearly completely deficient for expression of B-cell markers. Epstein-Barr virus (EBV) can be detected in about 40% of HL cases. Presumably, EBV protects HRS cell precursors from apoptosis. Histologically only single HRS cells are dispersed in a broad reactive cellular background. Interactions between HRS cells and their surrounding cellular infiltrate, among them paracrine activation of several signalling pathways, is crucial in HL. HRS cells also show autocrine activation of several signalling pathways. Among these, the aberrant expression and activation of seven different receptor tyrosine kinases (RTK) is of special interest, as many different antibodies and low molecular substances which inhibit RTK activity are already in clinical use for anticancer therapy. Therefore, blocking of RTK activities in HL may be a novel therapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

CCL28:

Chemokinrezeptorligand 28

cHL:

Klassisches Hodgkin-Lymphom

EBF:

„Early B cell factor“

EBV:

Epstein-Barr-Virus

EGFR:

„Epidermal growth factor receptor“

EPHB1:

„Ephrin type B receptor 1“

FLT3:

„FMS-related tyrosine kinase 3“

HER2:

„Human epidermal growth receptor 2“

HL:

Hodgkin-Lymphom

HRS-Zellen:

Hodgkin-Reed-Sternberg-Zellen

ID:

„Inhibitor of DNA-binding“

IL:

Interleukin

JAK:

Januskinase

LMP-1:

„Late membrane protein 1“

lpHL:

Lymphozyten-prädominantes Hodgkin-Lymphom

NF-κB:

Nukleärer Faktor kappa B

NGFβ:

„Nerve growth factor beta“

PDGFRA:

„Platelet-derived growth factor receptor“

PI3K:

Phosphatidylinositol-3-Kinase

RTK:

Rezeptor-Tyrosinkinasen

SOCS:

„Suppressor of cytokine signaling“

STAT:

„Signal transducers and activators of transcription“

TARC:

„Thymus and activation regulated chemokine“

TIE1:

„Tyrosin kinase with Ig and EGF homology domain“

TK:

Tyrosinkinase

TNF-α:

Tumor-Nekrose-Faktor alpha

TRKA:

„Tropomyosine related kinase A“

TRKB:

„Tropomyosine related kinase B“

WHO:

World Health Organisation

Literatur

  1. Bechtel D, Kurth J, Unkel C, Küppers R (2005) Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106:4345–4350

    Article  PubMed  CAS  Google Scholar 

  2. Blume Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  Google Scholar 

  3. Bräuninger A, Küppers R, Strickler JG et al (1997) Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A 94:9337–9342

    Article  Google Scholar 

  4. Buchdunger E, O’Reilly T, Wood J (2002) Pharmacology of imatinib (STI571). Eur J Cancer 38 (Suppl 5):S28–S36

    Article  PubMed  Google Scholar 

  5. Cossman J, Messineo C, Bagg A (1998) Reed-Sternberg cell: survival in a hostile sea. Lab Invest 78:229–235

    PubMed  CAS  Google Scholar 

  6. Gires O, Zimber-Strobl U, Gonnella R et al (1997) Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. Embo J 16:6131–6140

    Article  PubMed  CAS  Google Scholar 

  7. Hudis CA (2007) Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  PubMed  CAS  Google Scholar 

  8. Khan G (2006) Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin’s lymphoma? Exp Hematol 34:399–406

    Article  PubMed  CAS  Google Scholar 

  9. Küppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    Article  PubMed  Google Scholar 

  10. Küppers R, Rajewsky K, Zhao M et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A 91:10962–10966

    Article  PubMed  Google Scholar 

  11. Maggio E, van den Berg A, Diepstra A et al (2002) Chemokines, cytokines and their receptors in Hodgkin’s lymphoma cell lines and tissues. Ann Oncol 13 (Suppl 1):52–56

    PubMed  Google Scholar 

  12. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  13. Mathas S, Janz M, Hummel F et al (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7:20–215

    Article  Google Scholar 

  14. Morgillo F, Woo JK, Kim ES et al (2006) Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 66:10100–10111

    Article  PubMed  CAS  Google Scholar 

  15. Mottok A, Renné C, Willenbrock K et al (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110:3387–3390

    Article  PubMed  CAS  Google Scholar 

  16. Müller-Tidow C, Schwable J, Steffen B et al (2004) High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin Cancer Res 10:1241–1249

    Article  PubMed  Google Scholar 

  17. Pulford K, Delsol G, Roncador G et al (1999) Immunohistochemical screening for oncogenic tyrosine kinase activation. J Pathol 187:588–593

    Article  PubMed  CAS  Google Scholar 

  18. Renné C, Hinsch N, Willenbrock K et al (2007) The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer 120:2504–2509

    Article  PubMed  Google Scholar 

  19. Renné C, Martin-Subero JI, Eickernjager M et al (2006) Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 169:655–664

    Article  PubMed  Google Scholar 

  20. Renné C, Minner S, Küppers R et al (2008) Autocrine NGFbeta/TRKA signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res 32:163–167

    Article  PubMed  Google Scholar 

  21. Renné C, Willenbrock K, Küppers R et al (2005) Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood 105:4051–4059

    Article  PubMed  Google Scholar 

  22. Renné C, Willenbrock K, Martin-Subero JI et al (2007) High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia 21:780–787

    Article  PubMed  Google Scholar 

  23. Rini BI (2005) VEGF-targeted therapy in metastatic renal cell carcinoma. Oncologist 10:191–197

    Article  PubMed  CAS  Google Scholar 

  24. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  25. Schwering I, Bräuninger A, Klein U et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    Article  PubMed  CAS  Google Scholar 

  26. Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99:4283–4297

    Article  PubMed  CAS  Google Scholar 

  27. Stommel JM, Kimmelman AC, Ying H et al (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287–290

    Article  PubMed  CAS  Google Scholar 

  28. Swerdlow SH, Campo E, Harris NL et al (eds) (2008) World Health Organisation Classification of Tumors of Haematopoetic and Lymphoid Tissues. IARC Press, Lyon

  29. Weihrauch MR, Manzke O, Beyer M et al (2005) Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin’s disease: potential for a prognostic factor. Cancer Res 65:5516–5519

    Article  PubMed  CAS  Google Scholar 

  30. Weniger MA, Melzner I, Menz CK et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Renné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renné, C., Hansmann, M. & Bräuninger, A. Rezeptor-Tyrosinkinasen in Hodgkin-Lymphomen als mögliche Angriffspunkte neuer Therapieoptionen. Pathologe 30, 393–400 (2009). https://doi.org/10.1007/s00292-009-1157-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-009-1157-9

Schlüsselwörter

Keywords

Navigation