Skip to main content
Log in

Molekulare Pathologie der testikulären Keimzelltumoren: ein Update

Molecular pathology of testicular germ cell tumors: an update

  • Schwerpunkt: Uropathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Keimzelltumoren (KZT) stellen eine heterogene Gruppe von benignen und malignen Tumoren dar. Basierend auf ihren unterschiedlichen biologischen Fähigkeiten und ihrer Herkunft werden KZT in 5 verschiedene Gruppen eingeteilt. Maligne seminomatöse und nichtseminomatöse KZT in beiden Geschlechtern bilden die Gruppe der Typ-II-KZT. Ihre häufigsten Vertreter sind die testikulären malignen KZT. Typ-II-KZT zeigen große Übereinstimmungen mit embryonalen Stammzellen. Die unklassifizierte intratubuläre Keimzellneoplasie (IGCNU), die Vorläuferläsion der KZT Typ II, entwickelt sich aus persistierenden unreifen fetalen Keimzellen, Gonozyten, die sich einem normalen Differenzierungsprozess entziehen. Dabei wird postuliert, dass Exon-17-aktivierende Mutationen der Rezeptortyrosinkinase c-KIT sehr früh während der Keimzellentwicklung auftreten und dass Gonozyten mit aktiviertem c-KIT-Rezeptor in ihrer Differenzierung gehemmt werden und sich dadurch einer normalen Entwicklung entziehen. Neue diagnostische Marker für neoplastische Keimzellen wie OCT3/4 und AP-2γ werden spezifisch in IGCNU, Seminomen und embryonalen Karzinomen detektiert und können helfen, eine Keimzellneoplasie Typ II von anderen malignen Tumoren abzugrenzen.

Abstract

Germ cell tumors (GCT) comprise a heterogeneous group of benign and malignant tumors. Based on their different biological characteristics and their origin, five types of GCT are classified. Among these, malignant seminomatous and non-seminomatous GCT in males and females are designated as type II GCT. They occur most frequently as malignant testicular GCTs. Many characteristics of type II GCT can be linked to embryonic stem cells. Intratubular germ cell neoplasia, unclassified (IGCNU) is the precursor of type II GCT and derives from undifferentiated germ cells, gonocytes, which persist in the newborn testis and escape the normal differentiation process. It is suggested that Exon-17-activated mutations of the receptor tyrosine kinase, c-KIT, occur early in germ cell development and that gonocytes with an activated c-KIT receptor are restricted in their differentiation, thereby escaping normal development. New diagnostic markers for neoplastic germ cells, including OCT3/4 and AP-2γ, are specifically detected in IGCNU, seminomas and embryonal carcinomas and are helpful in the differentiation of type II GCT from other malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Almstrup K, Hoei-Hansen CE, Nielsen JE et al. (2005) Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours. Br J Cancer 92: 1934–1941

    Article  PubMed  CAS  Google Scholar 

  2. Skakkebaek NE (1972) Possible carcinoma-in-situ of the testis. Lancet 2: 516–517

    Article  PubMed  CAS  Google Scholar 

  3. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5: 210–222

    Article  PubMed  CAS  Google Scholar 

  4. Adami HO, Bergstrom R, Mohner M et al. (1994) Testicular cancer in nine northern European countries. Int J Cancer 59: 33–38

    Article  PubMed  CAS  Google Scholar 

  5. Weir HK, Marrett LD, Kreiger N et al. (2000) Pre-natal and peri-natal exposures and risk of testicular germ-cell cancer. Int J Cancer 87: 438–443

    Article  PubMed  CAS  Google Scholar 

  6. Strohsnitter WC, Noller KL, Hoover RN et al. (2001) Cancer risk in men exposed in utero to diethylstilbestrol. J Natl Cancer Inst 93: 545–551

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Rodriguez J, Garcia-Martin M, Nogueras-Ocana M et al. (1996) Exposure to pesticides and cryptorchidism: geographical evidence of a possible association. Environ Health Perspect 104: 1090–1095

    Article  PubMed  CAS  Google Scholar 

  8. Forman D, Oliver RT, Brett AR et al. (1992) Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis. Br J Cancer 65: 255–262

    PubMed  CAS  Google Scholar 

  9. Rapley EA, Crockford GP, Teare D et al. (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24: 197–200

    Article  PubMed  CAS  Google Scholar 

  10. Rapley EA, Crockford GP, Easton DF et al. (2003) Localisation of susceptibility genes for familial testicular germ cell tumour. Apmis 111: 128-133, discussion 133–125

    Article  PubMed  Google Scholar 

  11. Niwa H (2001) Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26: 137–148

    Article  PubMed  CAS  Google Scholar 

  12. Schuldiner M, Yanuka O,Itskovitz-Eldor J et al. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 97: 11307–11312

    Article  PubMed  CAS  Google Scholar 

  13. Sato N, Meijer L, Skaltsounis L et al. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10: 55–63

    Article  PubMed  CAS  Google Scholar 

  14. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6: 872–884

    Article  PubMed  CAS  Google Scholar 

  15. Korkola JE, Houldsworth J, Chadalavada RS et al. (2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66: 820–827

    Article  PubMed  CAS  Google Scholar 

  16. Biermann K, Heukamp LC, Steger K et al. (2007) Gene expression profiling identifies new biological markers of neoplastic germ cells. Anticancer Res 27: 3091–3100

    PubMed  CAS  Google Scholar 

  17. Cervantes RB, Stringer JR, Shao C et al. (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A 99: 3586–3590

    Article  PubMed  CAS  Google Scholar 

  18. Bignell G, Smith R, Hunter C et al. (2006) Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults. Genes Chromosomes Cancer 45: 42–46

    Article  PubMed  CAS  Google Scholar 

  19. Hong Y, Stambrook PJ (2004) Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci U S A 101: 14443–14448

    Article  PubMed  CAS  Google Scholar 

  20. Zafarana G, Grygalewicz B, Gillis AJ et al. (2003) 12p-amplicon structure analysis in testicular germ cell tumors of adolescents and adults by array CGH. Oncogene 22: 7695–7701

    Article  PubMed  CAS  Google Scholar 

  21. Draper JS, Smith K, Gokhale P et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22: 53–54

    Article  PubMed  CAS  Google Scholar 

  22. Looijenga LH, Rosenberg C, Van Gurp RJ et al. (2000) Comparative genomic hybridization of microdissected samples from different stages in the development of a seminoma and a non-seminoma. J Pathol 191: 187–192

    Article  PubMed  CAS  Google Scholar 

  23. Pauls K, Schorle H, Jeske W et al. (2006) Spatial expression of germ cell markers during maturation of human fetal male gonads: an immunohistochemical study. Hum Reprod 21: 397–404

    Article  PubMed  CAS  Google Scholar 

  24. Pauls K, Jager R, Weber S et al. (2005) Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer 115: 470–477

    Article  PubMed  CAS  Google Scholar 

  25. Strohmeyer T, Reese D, Press M et al. (1995) Expression of the c-kit proto-oncogene and its ligand stem cell factor (SCF) in normal and malignant human testicular tissue. J Urol 153: 511–515

    Article  PubMed  CAS  Google Scholar 

  26. Rajpert-De Meyts E, Skakkebaek NE (1994) Expression of the c-kit protein product in carcinoma-in-situ and invasive testicular germ cell tumours. Int J Androl 17: 85–92

    Article  Google Scholar 

  27. Looijenga LH, De Leeuw H, Van Oorschot M et al. (2003) Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res 63: 7674–7678

    PubMed  CAS  Google Scholar 

  28. Biermann K, Göke F, Nettersheim D et al. (2007) c-KIT is frequently mutated in bilateral germ cell tumours and down-regulated during progression from intratubular germ cell neoplasia to seminoma. J Pathol 213: 311–318

    Article  PubMed  CAS  Google Scholar 

  29. Sakuma Y, Sakurai S, Oguni S et al. (2004) c-kit gene mutations in intracranial germinomas. Cancer Sci 95: 716–720

    Article  PubMed  CAS  Google Scholar 

  30. Przygodzki RM, Hubbs AE, Zhao FQ, O’leary TJ (2002) Primary mediastinal seminomas: evidence of single and multiple KIT mutations. Lab Invest 82: 1369–1375

    PubMed  CAS  Google Scholar 

  31. Kamakura Y, Hasegawa M, Minamoto T et al. (2006) C-kit gene mutation: common and widely distributed in intracranial germinomas. J Neurosurg 104: 173–180

    PubMed  Google Scholar 

  32. Biermann K, Klingmuller D, Koch A et al. (2006) Diagnostic value of markers M2A, OCT3/4, AP-2gamma, PLAP and c-KIT in the detection of extragonadal seminomas. Histopathology 49: 290–297

    Article  PubMed  CAS  Google Scholar 

  33. Mauduit C, Hamamah S, Benahmed M (1999) Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5: 35–545

    Article  Google Scholar 

  34. Besmer P, Manova K, Duttlinger R et al. (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl 125–137

  35. Farini D, La Sala G, Tedesco M, De Felici M (2007) Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Dev Biol 306: 572–583

    Article  PubMed  CAS  Google Scholar 

  36. Runyan C, Schaible K, Molyneaux K et al. (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133: 4861–4869

    Article  PubMed  CAS  Google Scholar 

  37. Stallock J, Molyneaux K, Schaible K.et al. (2003) The pro-apoptotic gene Bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development 130: 6589–6597

    Article  PubMed  CAS  Google Scholar 

  38. Molyneaux KA, Stallock J, Schaible K, Wylie C (2001) Time-lapse analysis of living mouse germ cell migration. Dev Biol 240: 488–498

    Article  PubMed  CAS  Google Scholar 

  39. Kinugawa K, Hyodo F, Matsuki T et al. (1998) Establishment and characterization of a new human testicular seminoma cell line, JKT-1. Int J Urol 5: 282–287

    Article  PubMed  CAS  Google Scholar 

  40. Mizuno Y, Gotoh A, Kamidono S, Kitazawa S (1993) Establishment and characterization of a new human testicular germ cell tumor cell line (TCam-2). Nippon Hinyokika Gakkai Zasshi 84: 1211–1218

    PubMed  CAS  Google Scholar 

  41. Eckert D, Nettersheim D, Heukamp LC et al. (2008) TCam-2 but not JKT-1 cells resemble seminoma in cell culture. Cell Tissue Res 331: 529–538

    Article  PubMed  CAS  Google Scholar 

  42. Goddard NC, Mcintyre A, Summersgill B et al. (2007) KIT and RAS signalling pathways in testicular germ cell tumours: new data and a review of the literature. Int J Androl 30: 337–349

    Article  PubMed  CAS  Google Scholar 

  43. De Jong J, Stoop H, Gillis AJ et al. (2008) Further characterization of the first seminoma cell line TCam-2. Genes Chromosomes Cancer 47: 185–196

    Article  Google Scholar 

  44. Looijenga LH, Stoop H, De Leeuw HP et al. (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63: 2244–2250

    PubMed  CAS  Google Scholar 

  45. Jones TD, Ulbright TM, Eble JN, Cheng L (2004) OCT4: A sensitive and specific biomarker for intratubular germ cell neoplasia of the testis. Clin Cancer Res 10: 8544–8547

    Article  PubMed  CAS  Google Scholar 

  46. Sung MT, Jones TD, Beck SD et al. (2006) OCT4 is superior to CD30 in the diagnosis of metastatic embryonal carcinomas after chemotherapy. Hum Pathol 37: 662–667

    Article  PubMed  CAS  Google Scholar 

  47. Cheng L, Sung MT, Cossu-Rocca P et al. (2007) OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211: 1–9

    Article  PubMed  CAS  Google Scholar 

  48. De Jong J, Stoop H, Dohle GR et al. (2005) Diagnostic value of OCT3/4 for pre-invasive and invasive testicular germ cell tumours. J Pathol 206: 242–249

    Article  Google Scholar 

  49. Van Casteren NJ, Stoop H, Dohle GR et al. (2008) Noninvasive detection of testicular carcinoma in situ in semen using OCT3/4. Eur Urol 54: 153–160

    Article  Google Scholar 

  50. Jones TD, Maclennan GT, Bonnin JM et al. (2006) Screening for intratubular germ cell neoplasia of the testis using OCT4 immunohistochemistry. Am J Surg Pathol 30: 1427–1431

    Article  PubMed  Google Scholar 

  51. Pauls K, Jager R, Weber S et al. (2005) Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer 115: 470–477

    Article  PubMed  CAS  Google Scholar 

  52. Pauls K, Wardelmann E, Franke FE et al. (2005) Primary extragonadal germ cell tumour: unusual localization of a c-kit mutated retroperitoneal seminoma in the gastric wall. Histopathology 47: 112–114

    Article  PubMed  CAS  Google Scholar 

  53. Friedrichs N, Jager R, Paggen E et al. (2005) Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Mod Pathol 18: 431–438

    Article  PubMed  CAS  Google Scholar 

  54. Odegaard E, Staff AC, Kaern J et al. (2006) The AP-2gamma transcription factor is upregulated in advanced-stage ovarian carcinoma. Gynecol Oncol 100: 462–468

    Article  PubMed  CAS  Google Scholar 

  55. Looijenga LH, Hersmus R, Gillis AJ et al. (2006) Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res 66: 290–302

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Biermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biermann, K., Zhou, H. & Büttner, R. Molekulare Pathologie der testikulären Keimzelltumoren: ein Update. Pathologe 29, 348–353 (2008). https://doi.org/10.1007/s00292-008-1014-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-008-1014-2

Schlüsselwörter

Keywords

Navigation