Skip to main content
Log in

Bedeutung des „Normalgewebes“ in der Brustkrebsentstehung

Neue Vorstellungen zur frühen Pathogenese des Mammakarzinoms

The significance of “normal tissue” in the development of breast cancer: new concepts of early carcinogenesis

  • Schwerpunkt: Mammapathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die molekularbiologischen Abläufe in der frühen Pathogenese des Mammakarzinoms sind nur in Ansätzen bekannt. Speziell die Einschätzungen zu postulierten Vorläuferläsionen des invasiven Mammakarzinoms, wie der duktalen Hyperplasie und dem duktalen In-situ-Karzinom, werden bezüglich ihrer Pathogenese und Biologie kontrovers diskutiert. Neuere Forschungsergebnisse zu biologischen Regulationsmechanismen und genetischen Veränderungen im morphologisch unauffälligen, normalen Brustdrüsengewebe geben einen fundierten Anlass zu einer Neuinterpretation der gängigen Progressionsmodelle des invasiven Mammakarzinoms. Speziell die Entdeckung von genetischen Alterationen im normalen, tumorfreien Brustdrüsengewebe stellt die bisher postulierten Verwandtschaftsverhältnisse zwischen den invasiven und präinvasiven Mammakarzinomen auf der einen Seite und benignen, proliferativen duktalen Mammaläsionen auf der anderen Seite in Frage. Gestützt werden diese Zweifel zudem durch die Beschreibung von verschiedenen Zellkompartimenten, einschließlich eines „Progenitorzellkompartiments“ mit unterschiedlichen Zytokeratinexpressionsmustern und Parallelen dieser Expressionsmuster mit bekannten oder postulierten Vorstufen des Mammakarzinoms wie auch des invasiven Mammakarzinoms. Ziel dieser Arbeit ist, eine Übersicht über die neuesten Entwicklungen in der Mammapathologie zu geben und Konsequenzen für ein in Bewegung befindliches Verständnis zur Pathogenese des Mammakarzinoms aufzuzeichnen.

Abstract

Only little information on the primary molecularbiological events involved in early breast is available. In particular, the definition of postulated precursor lesions of invasive breast cancer, such as ductal hyperplasia or ductal carcinoma in situ, is under an intense, controversial discussion in terms of pathogenesis and tumor biology. The most recent research on biological regulation mechanisms and genetic alterations in morphologically normally appearing breast tissue give rise for a reinterpretation for the most common progression models of breast cancer. The detection of genetic alterations within normal breast tissue in particular challenges the commonly postulated relationship between invasive and in situ breast carcinomas on the one hand, and benign, proliferative breast lesions on the other. The concerns about these relationship are further supported by the description of different cellular compartments within the normal female breast, including a “progenitor cell compartment” with different cytokeratin expression patterns, which can be transferred towards well known or suspected precursor lesions of invasive and in situ breast cancer. The aim of this manuscript is to provide an overview of the most recent results and developments in breast pathology, and to describe the consequences of our changing understanding of breast carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abd El-Rehim DM, Ball G, Pinder SE et al. (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterized series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116: 340–350

    Article  PubMed  Google Scholar 

  2. Bocker W, Bier B, Freytag G et al. (1992) An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part II: Epitheliosis and ductal carcinoma in situ. Virchows Arch A Pathol Anat Histopathol 421: 323–330

    Article  PubMed  Google Scholar 

  3. Boecker W, Buerger H, Schmitz K et al. (2001) Ductal epithelial proliferations of the breast: a biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 195: 415–421

    Article  PubMed  Google Scholar 

  4. Boecker W, Moll R, Poremba C et al. (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: A new cell biological concept. Lab Invest 82: 737–746

    PubMed  Google Scholar 

  5. Buerger H, Otterbach F, Simon R et al. (1999 a) Comparative genomic hybridization of ductal carcinoma in situ of the breast – evidence of multiple genetic pathways. J Pathol 187: 396–402

    Article  PubMed  Google Scholar 

  6. Buerger H, Otterbach F, Simon R et al. (1999 b) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189: 521–526

    Article  PubMed  Google Scholar 

  7. Buerger H, Poremba C, Diallo R et al. (2000) Erarbeitung eines zytogenetischen und morphologischen Progressionsmodell des invasiven Mammakarzinoms. Pathologe 21: 375–382

    Article  PubMed  Google Scholar 

  8. Dawson PJ, Baekey PA, Clark RA (1995) Mechanisms of multifocal breast cancer: an immunocytochemical study. Hum Pathol 26: 965–969

    Article  PubMed  Google Scholar 

  9. Deng G, Lu Y, Zlotnikov G et al. (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057–2059

    Article  PubMed  Google Scholar 

  10. Dontu G, Abdallah WM, Foley J M et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270

    Article  PubMed  Google Scholar 

  11. Dupont WD, Page DL (1981) Risk factors for breast cancer in women with proliferative breast disease. J Natl Cancer Inst 312: 146–151

    Google Scholar 

  12. Elston CW, Ellis IO (1998) The breast. In: Elston CW, Ellis IO (eds) Systemic pathology. Churchill Livingstone, London, pp 365–384

  13. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  Google Scholar 

  14. Fujii H, Marsh C, Cairns P et al. (1996) Genetic divergence in the clonal evolution of breast cancer. Cancer Res 56: 1493–1497

    PubMed  Google Scholar 

  15. Going JJ, Abd El-Monem HM, Craft JA (2001) Clonal origins of human breast cancer. J Pathol 194: 406–412

    Article  PubMed  Google Scholar 

  16. Gusterson BA, Ross DT, Heath VJ, Stein T (2005) Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 7: 143–148

    Article  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  PubMed  Google Scholar 

  18. Jones C, Nonni AV, Fulford L et al. (2001) CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation. Br J Cancer 85: 422–427

    Article  PubMed  Google Scholar 

  19. Jones C, Ford E, Gillett C et al. (2004) Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res 10: 5988–5997

    Article  PubMed  Google Scholar 

  20. Korsching E, Packeisen J, Agelopoulos K et al. (2002) Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest 82: 1525–1533

    PubMed  Google Scholar 

  21. Lakhani SR (1999) The transition from hyperplasia to invasive carcinoma of the breast. J Pathol 187: 272–278

    Article  PubMed  Google Scholar 

  22. Lakhani SR, Collins N, Stratton MR, Sloane JP (1995) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48: 611–615

    PubMed  Google Scholar 

  23. Lakhani SR, Slack DN, Hamoudi RA et al. (1996) Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest 74: 129–135

    PubMed  Google Scholar 

  24. Lakhani SR, Chaggar R, Davies S et al. (1999) Genetic alterations in „normal“ luminal and myoepthelial cells of the breast. J Pathol 189: 496–503

    Article  PubMed  Google Scholar 

  25. Larson PS, de las Morenas A, Cupples LA et al. (1998) Genetically abnormal clones in histologically normal breast tissue. Am J Pathol 152: 1591–1598

    PubMed  Google Scholar 

  26. Li Z, Moore DH, Meng ZH et al. (2002 a) Increased risk of local recurrence is associated with allelic loss in normal lobules of breast cancer patients. Cancer Res 62: 1000–1003

    PubMed  Google Scholar 

  27. Li Z, Meng ZH, Chandraserkan R et al. (2002 b) Biallelic inactivation of the thyroid hormone receptor ß1 gene in early stage breast cancer. Cancer Res 62: 1939–1943

    PubMed  Google Scholar 

  28. Lu YJ, Osin P, Lakhani SR et al. (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58: 4721–4727

    PubMed  Google Scholar 

  29. Moll R, Franke WW, Schiller DL et al. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24

    Article  PubMed  Google Scholar 

  30. O’Connell P, Pekkel V, Fuqua S et al. (1994) Molecular genetic studies of early breast cancer evolution. Breast Cancer Res Treat 32: 5-12

    PubMed  Google Scholar 

  31. O’Connell P, Pekkel V, Fuqua SA et al. (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90: 697–703

    Article  PubMed  Google Scholar 

  32. Otterbach F, Bankfalvi A, Bergner S et al. (2000) Cytokeratin 5/6-immunohistochemistry is helpful in the diagnosis of atypical proliferations of the breast. Histopathology 37: 232–240

    Article  PubMed  Google Scholar 

  33. Perou C, Sorlie T, Eisen M et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752

    Article  PubMed  Google Scholar 

  34. Reis-Filho JS, Simpson PT, Jones C et al. (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207: 1–13

    Article  PubMed  Google Scholar 

  35. Simpson PT, Gale T, Reis-Filho JS et al. (2005 a) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29: 734–746

    Article  PubMed  Google Scholar 

  36. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005 b) Molecular evolution of breast cancer. J Pathol 205: 248–254

    Article  PubMed  Google Scholar 

  37. Slaughter DP, Southwick HP, Smejkal W (1953) „Field cancerization“ in oral stratified squamous epithelium. Cancer 6: 963–968

    PubMed  Google Scholar 

  38. Sorlie T, Perou CM, Tibshirani R et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 10869–10874

    Article  PubMed  Google Scholar 

  39. Teixeira MR, Pandis N, Bardi G et al. (1995) Clonal heterogeneity in breast cancer: karyotypic comparisons of multiple intra- and extra-tumorous samples from 3 patients. Int J Cancer 63: 63–68

    PubMed  Google Scholar 

  40. Tidow N, Boecker A, Schmidt H et al. (2003) Distinct amplifications in regulatory sequences of egfr contribute to early steps in breast cancer development. Cancer Res 63: 1172–1178

    PubMed  Google Scholar 

  41. Tsuda H, Takarabe T, Hasegawa F et al. (1999) Myoepithelial differentiation in high-grade invasive carcinom with large central acellular zones. Hum Pathol 30: 1134–1139

    Article  PubMed  Google Scholar 

  42. Van de Rijn M, Perou CM, Tibshirani R et al. (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161: 1991–1996

    PubMed  Google Scholar 

  43. Van’t Heer L, Dai H, van de Vijver M et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  PubMed  Google Scholar 

  44. Wang Y, Klijn JG, Zhang Y et al. (2000) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679

    Google Scholar 

  45. Wetzels RH, Kuijpers HJ, Lane EB et al. (1991) Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol 138: 751–763

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bürger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, H., Kersting, C., Hungermann, D. et al. Bedeutung des „Normalgewebes“ in der Brustkrebsentstehung. Pathologe 27, 319–325 (2006). https://doi.org/10.1007/s00292-006-0857-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-006-0857-7

Schlüsselwörter

Keywords

Navigation