Skip to main content
Log in

Expression des Angiotensin converting enzyme (ACE) bei pulmonaler Hypertonie

Expression of angiotensin I converting enzyme in pulmonary hypertension

  • Schwerpunkt: Lungen- und Pleurapathologie — Originalie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfasssung

In der vorliegenden Arbeit wurde überprüft, ob bei pulmonaler Hypertonie (PH) eine im Vergleich zu regelrechtem Lungengewebe vermehrte ACE-Expression vorliegt und diese mit bestimmten Hypertonieformen korreliert.

Die ACE-Antigenexpression wurde immunhistochemisch an 33 morphologisch regelrechten Lungengewebeproben (19 Männer, 32–77 J.; 14 Frauen, 34–93 J.) sowie Lungengewebeproben von 94 Patienten (67 Männer, 30–97 J.; 27 Frauen: 27–90 J.) mit klinisch gesicherter PH unterschiedlicher Genese (gemäß Venedig-Klassifikation) untersucht.

Es fand sich — unter Beibehaltung des in regelrechtem Lungengewebe nachweisbaren gefäßtypspezifischen Expressionsmusters — eine vermehrte ACE-Expression in Arterien sowie Arteriolen und Kapillaren bei den Proben mit pulmonal arterieller PH und PH infolge (chronischer) Thrombembolie bzw. Kollagenose. Hingegen war die ACE-Expression bei PH infolge Lungenerkrankung mit/ohne Hypoxie (COPD) bzw. Linksherzerkrankung nicht oder nur minimal vermehrt.

Die Untersuchungen bestätigen die bisher im Tierversuch nachgewiesene vermehrte ACE-Expression im arteriellen Gefäßschenkel in signifikantem Ausmaß nur für bestimmte PH-Formen. Diese Variation der ACE-Antigenexpression zwischen verschiedenen PH-Formen könnte für differenzierte therapeutische Ansätze (z. B. Wirksamkeit von ACE-Hemmern) bedeutsam sein.

Abstract

We studied angiotensin I converting enzyme (ACE) expression in lung tissue from patients with different forms of pulmonary hypertension (PH) in comparison with that from morphologically normal lung specimens.

ACE antigen expression was analysed by immunohistochemistry in morphologically normal lung tissue from 33 patients (19 males, 32–77 years; 14 females, 34–93 years) and compared to that in specimens from 94 patients (67 males, 30–97 years; 27 females: 27–90 years) with different clinically proven forms of PH (accordong to Venedig classification).

Type specific vessel expression pattern as described for normal lung tissue was generally intensified in arteries, arterioles and capillaries of the lung specimens with PH. Specimens with PH due to left heart disease and chronic obstructive pulmonary disease (COPD) showed only very weak or no augmented arterial ACE expression, while PH due to collagenoses or interstitial lung disease showed significantly higher ACE expression.

In human PH there is — comparable to animal models — a raised ACE expression in pulmonary lung vessels, with differences between the various forms of PH. These differences in ACE expression may be relevant for subtly differentiated therapeutic anti-ACE therapy regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abraham WT, Raynolds MV, Gottschall B et al. (1995) Importance of angiotensin-converting enzyme in pulmonary hypertension. Cardiology 86:9–15

    PubMed  Google Scholar 

  2. Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31:221–230

    Article  PubMed  Google Scholar 

  3. Alpert MA, Pressly TA, Mukerji V et al. (1992) Short- and long-term hemodynamic effects of captopril in patients with pulmonary hypertension and selected connective tissue disease. Chest 102:1407–1412

    PubMed  Google Scholar 

  4. Atkinson C, Stewart S, Upton PD et al. (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–1678

    Article  PubMed  Google Scholar 

  5. Beneteau B, Baudin B, Morgant G et al. (1986) Automated kinetic assay of ACE in serum. Clin Chem 32:884–886

    PubMed  Google Scholar 

  6. Brull DJ, Sanders J, Rumley A et al. (2002) Impact of angiotensin converting enzyme inhibition on post-coronary artery bypass interleukin 6 release. Heart 87:252–255

    Article  PubMed  Google Scholar 

  7. Busjahn A, Knoblauch H, Knoblauch M et al. (1997) Angiotensin-converting enzyme and angiotensinogen gene polymorphisms, plasma levels, cardiac dimensions. A twin study. Hypertension 29:165–170

    PubMed  Google Scholar 

  8. Challah M, Nadaud S, Philippe M et al. (1997) Circulating and cellular markers of endothelial dysfunction with aging in rats. Am J Physiol Heart Circ Physiol 273:1941–1948

    Google Scholar 

  9. Clozel JP, Saunier C, Hartemann D, Fischli W (1991) Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure of pulmonary arteries of rats exposed to chronic hypoxia. J Cardiovasc Pharmacol 17:36–40

    PubMed  Google Scholar 

  10. Einsfelder BM, Müller K-M (2005) Pulmonale Hypertonie bei chronischen myeloproliferativen Erkrankungen. Pathologe 26:169–177

    Article  PubMed  Google Scholar 

  11. Geisterfer AA, Peach MJ, Owens GK (1988) Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62:749–756

    PubMed  Google Scholar 

  12. Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461

    PubMed  Google Scholar 

  13. Gillis CN, Roth JA (1977) The fate of biogenic monoamines in perfused rabbit lung. Br J Pharmacol 59:585–590

    PubMed  Google Scholar 

  14. Graham LM, Vasil A, Vasil ML et al. (1990) Decreased pulmonary vasoreactivity in an animal model of chronic Pseudomonas pneumonia. Am Rev Respir Dis 142:221–229

    PubMed  Google Scholar 

  15. Kentera D, Susic D, Cvetkovic A, Djordjevic G (1981) Effects of SQ 14.225, an orally active inhibitor of angiotensin-converting enzyme, on hypoxic pulmonary hypertension and right ventricular hypertrophy in rats. Basic Res Cardiol 76:344–351

    Article  PubMed  Google Scholar 

  16. Kitamoto S, Egashira K, Kataoka C et al. (2000) Increased activity of nuclear factor-B participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 102:806–812

    PubMed  Google Scholar 

  17. Koyanagi M, Egashira K, Kitamoto S et al. (2000) A role of monocyte chemoattractant protein-1 in cardiovascular remodeling induced by chronic blockade of nitric oxide synthesis. Circulation 102:2243–2248

    PubMed  Google Scholar 

  18. Kubo-Inoue M, Egashira K, Usui M et al. (2002) Long-term inhibition of nitric oxide synthesis increases arterial thrombogenecity in rat carotid artery. Am J Physiol Heart Circ Physiol 282:1478–1484

    Google Scholar 

  19. Marshall RP (2003) The pulmonary renin-angiotensin-system. Curr Pharm Des 9:715–722

    Article  PubMed  Google Scholar 

  20. Michaud A, Williams TA, Chauvet M-T, Corvol P (1997) Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I. Mol Pharmacol 51:1070–1076

    PubMed  Google Scholar 

  21. Möhle R, Green D, Moore MA et al. (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94:663–668

    Article  PubMed  Google Scholar 

  22. Morrell NW, Atochina EN, Morris KG et al. (1995) Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest 96:1823–1833

    PubMed  Google Scholar 

  23. Müller AM, Gruhn K, Lange SF et al. (2004) Angiotensin I-converting Enzym (ACE) in regelrechtem humanen Lungengewebe. Pathologe 25:141–146

    Article  PubMed  Google Scholar 

  24. Nishimura H, Tsuji H, Masuda H et al. (1997) Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb Haemost 77:1189–1195

    PubMed  Google Scholar 

  25. Otani A, Takagi H, Suzuma K, Honda Y (1998) Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ Res 82:619–628

    PubMed  Google Scholar 

  26. Rapaport SI, Rao LV (1992) Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler Thromb 12:1111–1121

    PubMed  Google Scholar 

  27. Remmele W, Hildebrand U, Hienz HA et al. (1986) Comparative histological, histochemical, immunohistochemical and biochemical studies on oestrogen receptors, lectin receptors, an Barr bodies in human breast cancer. Virchows Arch A Pathol Anat Histopathol 409:127–147

    Article  PubMed  Google Scholar 

  28. Saijonmaa O, Nyman T, Kosonen R, Fyhrquist F (2001) Upregulation of angiotensin-converting enzyme by vascular endothelial growth factor. Am J Physiol Heart Circ Physiol 280:885–891

    Google Scholar 

  29. Schieffer B, Bünte C, Witte J et al. (2004) Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J Am Coll Cardiol 44:362–368

    Article  PubMed  Google Scholar 

  30. Simonneau G, Nazzareno G, Rubin LJ et al. (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S–12S

    Article  PubMed  Google Scholar 

  31. Skeggs LT Jr, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensin-converting enzyme. J Exp Med 103:295–299

    Article  PubMed  Google Scholar 

  32. Soubrier F, Alhenc-Gelas F, Hubert C et al. (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A 85:9386–9390

    PubMed  Google Scholar 

  33. Steen VD, Medsger TA Jr (1998) Case-control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum 41:1613–1619

    Article  PubMed  Google Scholar 

  34. van Suylen RJ, Wouters EF, Pennings HJ et al. (1999) The DD genotype of the angiotensin converting enzyme gene is negatively associated with right ventricular hypertrophy in male patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 159:1791–1795

    PubMed  Google Scholar 

  35. Usui M, Egashira K, Tomita H et al. (2000) Important role of local angiotensin II activity mediated via type 1 receptor in the pathogenesis of cardiovascular inflammatory changes induced by chronic blockade of nitric oxide synthesis in rats. Circulation 101:305–310

    PubMed  Google Scholar 

  36. Voelkel NF, Hoeper M, Maloney J, Tuder RM (1996) Vascular endothelial growth factor in pulmonary hypertension. Ann N Y Acad Sci 796:186–193

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, A.M., Maas, M., Kozianka, U. et al. Expression des Angiotensin converting enzyme (ACE) bei pulmonaler Hypertonie. Pathologe 27, 133–139 (2006). https://doi.org/10.1007/s00292-006-0820-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-006-0820-7

Schlüsselwörter

Keywords

Navigation