Skip to main content
Log in

Leberkarzinome und Lebermetastasen

Regression und Therapieresistenz nach regionaler Chemotherapie und lokaler Tumorablation

Regression and therapy-resistance of primary liver tumors and liver metastases after regional chemotherapy and local tumor ablation

  • Originalien
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Hochdosierte regionale Chemotherapie, Chemoembolisation und andere Verfahren lokaler Tumorablation werden bei Malignomen der Leber abgesehen von hochmalignen Lebertumoren des Kindesalters meist palliativ eingesetzt. Sie führen zu charakteristischen Regressionsbefunden: Narbig abgekapselte Nekrosen resultieren aus einer Zerstörung des Tumorgewebes einschließlich seines fibrovaskulären Stromas. Zellarme Ödemfibrosen sind Folge einer elektiven Tumorzelleradikation unter Erhalt des Gefäßbettes. Vollständig eradizierte und rasch resorbierte hochmaligne Tumorinfiltrate werden durch knotig regenerierendes Lebergewebe ersetzt. Obliterierende Gefäßwandhyalinosen und perivaskuläre Tumornekrosen zeigen eine über das Gefäßnetz vermittelte therapeutische Schädigung an. Degenerative Tumorzellpleomorphie, z. B. Zellhydrops und Verfettung in HCC sind Folge zelltoxischer Schädigung.

Bei HCC beeinflusst der Makrotyp das Ansprechen auf die zytoreduktive Therapie. In multinodulären HCC bleiben nicht selten unbeeinträchtigte Knoten neben zerstörten Knoten bestehen. Gekapselte uninoduläre Tumoren sind leichter vollständig zu zerstören. Tumorgröße und Kapselstrukturen begrenzen die Wirkung einer Injektionsbehandlung von HCC durch Ethanol. Bei Karzinomen mit infiltrierendem Randsaum, insbesondere bei Metastasen von Adenokarzinomen und Cholangiokarzinomen der Leber reduziert die Zytostase am stärksten die Tumorperipherie. Dennoch sind Invasionsfront, Tumorgewebe in Portalvenen und Gallengängen sowie Residuen im Winkel zwischen subkapsulärem Tumor, Leberkapsel und benachbartem Parenchym selbst durch hochdosierte regionale Zytostase nur schwer vollständig zu treffen. Diese Residuen sind Ausgangsgewebe für den lokalen Tumorprogress und weitere metastatische Aussaat. Die wesentlich von Vaskularisation und Perfusion bestimmte topische Resistenz limitiert neben tumorzellgebundenen Resistenzmechanismen den Effekt selbst einer intensiven zytoreduktiven Tumortherapie.

Abstract

High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage.

Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aigner KR, Link KH, Schwemmle K (1988) Isolated liver perfusion: 5-year results. Reg Cancer Treat 1:11–22

    Google Scholar 

  2. Aoki K, Okazaki N, Okada S et al. (1994) Radiotherapie for hepatocellular carcinoma: clinicopathological study of seven autopsy cases. Hepatogastoenterology 41:427–431

    Google Scholar 

  3. Arata S, Tanaka K, Okazaki H et al. (2001) Risk factors for recurrence of large HCC in patients treated by combined TAE and PEI. Hepatogastroenterology 48:480–485

    Google Scholar 

  4. Camma C, Schepis F, Orlando A et al. (2002) Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 224:47–54

    Google Scholar 

  5. Elaraj DM, Alexander HR (2004) Current role of hepatic arterial infusion and isolated liver perfusion for the treatment of colorectal cancer liver metastases. Cancer J 10:128–138

    Google Scholar 

  6. Fan J, Tang ZY, Yu YQ et al. (1998) Improved survival with resection after transcatheter arterial chemoembolization (TACE) for unresectable hepatocellular carcinoma. Dig Surg 15:674–678

    Google Scholar 

  7. Fischer HP (1985) Histomorphometry of spherical tumors using holoptical cross-sections. Virchows Arch 405:277–284

    Google Scholar 

  8. Fischer HP (1985) Therapieinduzierte Tumorregression. Morphologische Befunde an malignen primären und sekundären Lebertumoren nach hochdosierter Zytostase. Pathologe 6:16–23

    CAS  PubMed  Google Scholar 

  9. Fischer HP, Aigner KR, Schwemmle K (1989) Regression of primary liver tumors after high dosage regional chemotherapy. Reg Cancer Treat 2:149–154

    Google Scholar 

  10. Fischer HP, Paul S (1992) Morphologic aspects of regression and therapy-resistance of primary liver tumors and liver metastases after regional chemotherapy. Reg Cancer Treat 3–4:140–145

    Google Scholar 

  11. Fuchs J, Rydzynski J, von Schweinitz D et al. (2002) Pretreatment prognostic factors and treatment results in children with hepatoblastoma. Cancer 95:172–182

    Google Scholar 

  12. Goldberg SN, Gazelle GS, Compton CC et al. (2000) Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer 88:2452–2463

    Article  CAS  PubMed  Google Scholar 

  13. Guo WJ; Yu EX (2003) Large primary liver cancer treated by chemoembolization combined with radiotherapy successfully. Hepatogastroenterology 50:519–522

    Google Scholar 

  14. Higuchi T, Kikuchi M, Okazaki M (1994) Hepatocellular carcinoma after transcatheter hepatic arterial embolization: a histopathologic study of 84 resected cases. Cancer 73:2259–2267

    Google Scholar 

  15. Hsu HC, Wei TC, Tsang YM et al. (1986) Histologic assessment of resected hepatocellular carcinoma after transcatheter hepatic arterial embolization. Cancer 57:1184–1191

    Google Scholar 

  16. Kuroda C, Sakurai M, Monder M et al. (1991) Limitation of transcatheter arterial chemoembolization using iodised oil for small hepatocellular carcinoma. A study in resected cases. Cancer 67:81–86

    Google Scholar 

  17. Nilson LAV, Zettergren L (1967 a) Blood supply and vascular pattern of induced primary carcinoma of the liver in rats. A microangiographic and histologic investigation. Acta Pathol Microbiol Scand 71:179–186

    Google Scholar 

  18. Nilson LAV, Zettergren L (1967 b) Effect of hepatic arterial ligation on induced primary liver carcinomas in rats. Acta Pathol Microbiol Scand 71:187–193

    Google Scholar 

  19. Ohnishi K, Yoshioka H, Ito S, Fujiwara K (1998) Prospective randomised controlled trial comparing percutaneous acetic acid injection and percutaneous ethanol injection for small hepatocellular carcinoma. Hepatology 27:67–72

    Article  CAS  PubMed  Google Scholar 

  20. Ohnishi K (1998) Comparison of percutaneous acetic acid injection and percutaneous ethanol injection for small hepatocellular carcinoma. Hepatogastroenterology 45:1254–1258

    Google Scholar 

  21. Puls R, Stroszcynski C, Gaffke G et al. (2003) Laser-induced thermotherapy (LITT) of liver metastases: MR-guided percutaneous insertion of an MRI-compatible irrigated microcathether system using a closed high-field unit. J Magn Reson Imaging 17:663–670

    Article  PubMed  Google Scholar 

  22. Sakurai M, Okamura J, Kuroda C (1984) Transcatheter chemoembolization effective for treating hepatocellular carcinoma: a histopathologic study. Cancer 54:387–392

    Google Scholar 

  23. Scheurlen M, Brambs HJ, Gassel HJ (2004) Hepatocellular carcinoma. In: Scheppach W, Bresalier RS, Tytgat GNJ (eds) Gastrointestinal and liver tumors. Springer, Berlin Heidelberg New York Tokyo, pp 261–279

  24. Tsushima Y, Funabasama S, Aoki J et al. (2004) Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data. Acta Radiol 11:215–223

    Google Scholar 

  25. Yamashita Y, Takahashi M, Koga Y et al. (1991) Prognostic factors in the treatment of hepatocellular carcinoma with transcatheter arterial embolization and arterial infusion. Cancer 67:385–391

    Google Scholar 

  26. Yoshida T, Sakon M, Umeshita K et al. (2001) Appraisal of transarterial immunoembolization for hepatocellular carcinoma: a clinicopathologic study. J Clin Gastroenterol 32:59–65

    Article  CAS  PubMed  Google Scholar 

  27. Yu YQ, Xu DB, Zhou XD et al. (1993) Experience with liver resection after hepatic arterial chemoembolization for hepatocellular carcinoma. Cancer 71:62–65

    Google Scholar 

Download references

Danksagung

Für die Hilfe bei der Bildbearbeitung danke ich Herrn Gerrit Klemm und Herrn Sven Padberg.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, HP. Leberkarzinome und Lebermetastasen. Pathologe 26, 191–200 (2005). https://doi.org/10.1007/s00292-005-0749-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-005-0749-2

Schlüsselwörter

Keywords

Navigation