Skip to main content
Log in

New formulations for the robust vehicle routing problem with time windows under demand and travel time uncertainty

  • Original Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We present new formulations for the robust vehicle routing problem with time windows (RVRPTW) under cardinality- and knapsack-constrained demand and travel time uncertainty. They are the first compact models to address the RVRPTW under travel time uncertainty while considering the knapsack uncertainty set. Moreover, our models employ different types of constraints to control time propagation based on Miller–Tucker–Zemlin and single commodity flow constraints, which are derived from the linearization of recursive equations. We develop branch-and-cut methods based on the proposed formulations, leveraging a dynamic programming algorithm to verify the robust feasibility of solutions concerning both demand and travel time uncertainty, in addition to specific and standard separation procedures from the literature. We present detailed computational results on RVRPTW benchmark instances to compare the performance of our models and algorithms. Furthermore, we evaluate the impact and advantages of implementing each studied uncertainty set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agra A, Christiansen M, Figueiredo R et al (2012) Layered formulation for the robust vehicle routing problem with time windows. In: Mahjoub AR, Markakis V, Milis I et al (eds) Combinatorial optimization. Springer, Berlin, pp 249–260

    Chapter  Google Scholar 

  • Agra A, Christiansen M, Figueiredo R et al (2013) The robust vehicle routing problem with time windows. Comput Oper Res 40(3):856–866

    Article  Google Scholar 

  • Bartolini E, Goeke D, Schneider M et al (2021) The robust traveling salesman problem with time windows under knapsack-constrained travel time uncertainty. Transp Sci 55(2):371–394

    Article  Google Scholar 

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1):49–71

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  Google Scholar 

  • Bianchessi N, Irnich S (2019) Branch-and-cut for the split delivery vehicle routing problem with time windows. Transp Sci 53(2):442–462

    Article  Google Scholar 

  • Boysen N, Fedtke S, Schwerdfeger S (2021) Last-mile delivery concepts: a survey from an operational research perspective. OR Spectrum 43:1–58

    Article  Google Scholar 

  • Caunhye AM, Alem D (2023) Practicable robust stochastic optimization under divergence measures with an application to equitable humanitarian response planning. OR Spectrum 1–48

  • De La Vega J, Munari P, Morabito R (2020) Exact approaches to the robust vehicle routing problem with time windows and multiple deliverymen. Comput Oper Res 124:105062

    Article  Google Scholar 

  • De La Vega J, Gendreau M, Morabito R et al (2023) An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands. Eur J Oper Res 308(2):676–695

    Article  Google Scholar 

  • Gavish B (1984) The delivery problem: new cutting planes procedures. In: TIMS XXVI Conference, Copenhagen

  • Gendreau M, Jabali O, Rei W (2014) Stochastic vehicle routing problems. In: Vehicle routing: problems, methods, and applications, 2nd edn. Society for Industrial and Applied Mathematics, pp 213–239

  • Gounaris CE, Wiesemann W, Floudas CA (2013) The robust capacitated vehicle routing problem under demand uncertainty. Oper Res 61(3):677–693

    Article  Google Scholar 

  • Gouveia L (1995) A result on projection for the vehicle routing problem. Eur J Oper Res 85(3):610–624

    Article  Google Scholar 

  • Hoogendoorn Y, Spliet R (2023) An improved integer L-shaped method for the vehicle routing problem with stochastic demands. INFORMS J Comput 35(2):423–439

    Article  Google Scholar 

  • Langevin A, Desrochers M, Desrosiers J et al (1993) A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows. Networks 23(7):631–640

    Article  Google Scholar 

  • Lee C, Lee K, Park S (2012) Robust vehicle routing problem with deadlines and travel time/demand uncertainty. J Oper Res Soc 63:1294–1306

    Article  Google Scholar 

  • Letchford AN, Salazar-González JJ (2006) Projection results for vehicle routing. Math Program 105(2):251–274

    Article  Google Scholar 

  • Letchford AN, Salazar-González JJ (2015) Stronger multi-commodity flow formulations of the capacitated vehicle routing problem. Eur J Oper Res 244(3):730–738

    Article  Google Scholar 

  • Lysgaard J, Letchford A, Eglese R (2004) A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math Program 100:423–445

    Article  Google Scholar 

  • Miller C, Tucker A, Zemlin R (1960) Integer programming formulation of traveling salesman problems. J Assoc Comput Mach 7(1):326–9

    Article  Google Scholar 

  • Minoux M (2009) On robust maximum flow with polyhedral uncertainty sets. Optim Lett 3(3):367–376

    Article  Google Scholar 

  • Munari P, Savelsbergh M (2022) Compact formulations for split delivery routing problems. Transp Sci 56(4):1022–1043

    Article  Google Scholar 

  • Munari P, Moreno A, De La Vega J et al (2019) The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method. Transp Sci 53(4):1043–1066

    Article  Google Scholar 

  • Ordonez F (2010) Robust vehicle routing. In: Hasenbein JJ, Gray P, Greenberg HJ (eds) Risk and optimization in an uncertain world. Informs, Catonsville, MD, chap 7, pp 153–178

  • Pessoa AA, Poss M, Sadykov R et al (2021) Branch-cut-and-price for the robust capacitated vehicle routing problem with knapsack uncertainty. Oper Res 69(3):739–754

    Article  Google Scholar 

  • Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res 35(2):254–265

    Article  Google Scholar 

  • Subramanyam A, Repoussis PP, Gounaris CE (2020) Robust optimization of a broad class of heterogeneous vehicle routing problems under demand uncertainty. INFORMS J Comput 32(3):661–681

    Article  Google Scholar 

  • Sungur I, Ordonez F, Dessouky M (2008) A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. IIE Trans (Inst Ind Eng) 40(5):509–523

    Google Scholar 

  • Wang A, Subramanyam A, Gounaris C (2021) Robust vehicle routing under uncertainty via branch-price-and-cut. Optim Eng 23:1895–1948

    Article  Google Scholar 

  • Yu Q, Cheng C, Zhu N (2022) Robust team orienteering problem with decreasing profits. INFORMS J Comput 34(6):3215–3233

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Editors and the two anonymous reviewers for carefully reviewing the manuscript and providing valuable suggestions. We also thank Carlos Neves and Marcelo de Freitas Cavalcante, from Federal University of Paraiba (Brazil), for sending us their feedback and pointing out a few typos and inconsistencies in the first version of our manuscript. This work was supported by São Paulo Research Foundation (FAPESP) [Grant Numbers 13/07375-0, 19/22235-6, 19/23596-2, 22/05803-3], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) [Finance Code 001], the National Council for Scientific and Technological Development (CNPq) [Grant Numbers 405702/2021-3, 314079/2023-8], and the Canadian Natural Sciences and Engineering Research Council (NSERC) [Grant Number 2019-00094] and the Fonds de recherche du Québec–Nature et technologie [programme Bourses de doctorat en recherche, dossier 347556].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Munari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: MTZ-based formulation for the RVRPTW under a multiple knapsack uncertainty set

To adapt the previous MTZ-based model to the multiple knapsack uncertainty set, we need new load and time variables and budget parameters. Each knapsack has a budget \(\Delta ^d_l\) (demand) or \(\Delta ^t_l\) (time). We provide the model for two knapsacks, and the extension to more knapsacks is trivial. The variables are now \(u_{i\delta _{1}\delta _{2}}\) to represent accumulated load of the vehicle up to node i, with a total deviation \(\delta _{1}\) over the demand’s nominal value for the first knapsack and \(\delta _{2}\) for the second one; likewise, time variables are now \(w_{i\delta _{1}\delta _{2}}\) representing the earliest possible time to start the service at node i, considering a total deviation of \(\delta _{1}\) over the travel time’s nominal value for the first knapsack and \(\delta _{2}\) for the second one. The model is then:

$$\begin{aligned}&\text{ min } \displaystyle \sum _{(i,j) \in A} c_{ij} x_{ij}, \end{aligned}$$
(45)
$$\begin{aligned}&\text{ s.t. } \text{(6), } \text{(7), } \text{(12), } \text{ and } \text{ to } \nonumber \\&\displaystyle u_{j \delta _{1}\delta _{2}} \ge u_{i\delta _{1}\delta _{2}}+\bar{d}_j+Q(x_{ij}-1), \ (i,j) \in A, 0\le \delta _{1}\le \Delta _1^d,0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(46)
$$\begin{aligned}&\displaystyle u_{j \delta _{1}\delta _{2}} \ge u_{i(\delta _{1}-\hat{d}_j)\delta _{2}}+\bar{d}_j +\hat{d}_j+Q(x_{ij}-1), \ (i,j) \in A, j\in {S}^{d}_{1},j \not \in {S}^{d}_{2}, \hat{d}_j\le \delta _{1} \le \Delta _1^d, 0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(47)
$$\begin{aligned}&\displaystyle u_{j \delta _{1}\delta _{2}} \ge u_{i\delta _{1}(\delta _{2}-\hat{d}_j)}+\bar{d}_j +\hat{d}_j+Q(x_{ij}-1), \ (i,j) \in A, j\not \in {S}^{d}_{1}, j \in {S}^{d}_{2}, 0\le \delta _{1} \le \Delta _1^d, \hat{d}_j\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(48)
$$\begin{aligned}&\displaystyle u_{j \delta _{1}\delta _{2}} \ge u_{i(\delta _{1}-\hat{d}_j)(\delta _{2}-\hat{d}_j)}+\bar{d}_j +\hat{d}_j+Q(x_{ij}-1), \ (i,j) \in A, j\in {S}^{d}_{1},j \in {S}^{d}_{2}, \hat{d}_j\le \delta _{1} \le \Delta _1^d, \hat{d}_j\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(49)
$$\begin{aligned}&\displaystyle u_{j \Delta _1^d\delta _{2}} \ge u_{i(\Delta _1^d-\lambda )\delta _{2}}+\bar{d}_j +\lambda +Q(x_{ij}-1), \ (i,j) \in A, j\in {S}^{d}_{1}, j \not \in {S}^{d}_{2}, 0\le \lambda \le \hat{d}_j, 0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(50)
$$\begin{aligned}&\displaystyle u_{j \delta _{1}\Delta _2^d} \ge u_{i\delta _{1}(\Delta _2^d-\lambda )}+\bar{d}_j +\lambda +Q(x_{ij}-1), \ (i,j) \in A, j\not \in {S}^{d}_{1}, j \in {S}^{d}_{2}, 0\le \lambda \le \hat{d}_j, 0\le \delta _{1}\le \Delta _1^d, \end{aligned}$$
(51)
$$\begin{aligned}&\displaystyle u_{j \delta _{1}\Delta _2^d} \ge u_{i(\delta _{1}-\lambda )(\Delta _2^d-\lambda )}+\bar{d}_j +\lambda +Q(x_{ij}-1), \ (i,j) \in A, j\in {S}^{d}_{1}, j \in {S}^{d}_{2}, \lambda \le \hat{d}_j, \end{aligned}$$
(52)
$$\begin{aligned}&\displaystyle u_{j\Delta _1^d\Delta _2^d} \le Q, \ j\in N, \end{aligned}$$
(53)
$$\begin{aligned}&\displaystyle w_{j \delta _{1}\delta _{2}} \ge w_{i(\delta _{1}-\lambda )\delta _{2}}+\bar{t}_{ij}+s_i +\lambda +b_{n+1}(x_{ij}-1), \ (i,j) \in A, (i,j)\in {S}^{t}_{1}, (i,j) \not \in {S}^{t}_{2}, 0\le \lambda \le \min \{\hat{t}_{ij}, \delta _{1}\}\le \Delta _1^t, 0\le \delta _{2}\le \Delta _2^t, \end{aligned}$$
(54)
$$\begin{aligned}&\displaystyle w_{j \delta _{1}\delta _{2}} \ge w_{i\delta _{1}(\delta _{2}-\lambda )}+\bar{t}_{ij}+s_i +\lambda +b_{n+1}(x_{ij}-1), \ (i,j) \in A, (i,j)\not \in {S}^{t}_{1}, (i,j) \in {S}^{t}_{2}, 0\le \delta _{1}\le \Delta _1^t, \lambda \le \min \{\hat{t}_{ij},\delta _{2}\}\le \Delta _2^t, \end{aligned}$$
(55)
$$\begin{aligned}&\displaystyle w_{j \delta _{1}\delta _{2}} \ge w_{i(\delta _{1}-\lambda )(\delta _{2}-\lambda )}+\bar{t}_{ij}+s_i +\lambda +b_{n+1}(x_{ij}-1), \ (i,j) \in A, (i,j)\in {S}^{t}_{1}, (i,j) \in {S}^{t}_{2}, 0\le \lambda \le \hat{t}_{ij},\lambda \le \delta _{1}\le \Delta _1^t, \lambda \le \delta _{2}\le \Delta _2^t, \end{aligned}$$
(56)
$$\begin{aligned}&\displaystyle a_j\le w_{j \delta _{1}\delta _{2}}\le b_j, \ (i,j) \in A, 0\le \delta _{1} \le \Delta ^t_1, 0\le \delta _{2} \le \Delta ^t_2, \end{aligned}$$
(57)
$$\begin{aligned}&u_{i\delta _{1}\delta _{2}} \ge 0, \ i\in N, 0\le \delta _{1} \le \Delta ^d_1, 0\le \delta _{2} \le \Delta ^d_2, \end{aligned}$$
(58)
$$\begin{aligned}&w_{i\delta _{1}\delta _{2}} \ge 0, \ i\in N, 0 \le \delta _{1} \le \Delta ^t_1, 0 \le \delta _{2} \le \Delta ^t_2. \end{aligned}$$
(59)

Similarly to the previous models, the objective function (45) seeks to minimize the total traveling costs. Constraints (46)–(52) compute the demand for the worst case and forbid subtours. The vehicle capacity is ensured by constraints (53). Constraints (54)–(56) are similar to (50)–(52), but for the travel time. The time windows constraints are imposed by (57) and the domains of the variables are defined in (58)–(59). Note that we can easily extend this model for k knapsacks by adding indices from \(\delta _1\) to \(\delta _k\).

Appendix 2: Commodity-flow formulation for the RVRPTW under a multiple knapsack uncertainty set

Similarly to how it was done for the MTZ-based model, we extend formulation (32)–(38) to consider multiple knapsacks. Again, we present a formulation containing two knapsacks as the extension to k knapsacks is trivial, but the number of constraints grows quickly. This formulation uses the same sets and parameters as the MTZ-based model, while the load and time variables are now \(f_{ij\delta _{1}\delta _{2}}\) and \(g_{ij\delta _{1}\delta _{2}}\) with similar interpretations. The resulting model is given by:

$$\begin{aligned}&\text{ min } \displaystyle \sum _{(i,j) \in A} c_{ij} x_{ij}, \end{aligned}$$
(60)
$$\begin{aligned}&\text{ s.t. } \text{(6), } \text{(7), } \text{(12), } \text{ and } \text{ to } \nonumber \\&\displaystyle \sum _{j:(i,j) \in A}f_{ij\delta _{1}\delta _{2}} \ge \bar{d}_i+\sum _{h:(h,i) \in A}f_{hi\delta _{1}\delta _{2}}, \ i \in N, 0\le \delta _{1}\le \Delta _1^d, 0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(61)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\delta _{1}\delta _{2}} \ge \bar{d}_i+\hat{d}_i +\sum _{h:(h,i) \in A}f_{hi(\delta _{1}-\hat{d}_i)\delta _{2}}, \ i \in N, i\in S^{d}_{1},i \not \in S^{d}_{2}, \hat{d}_i\le \delta _{1}\le \Delta _1^d, 0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(62)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\delta _{1}\delta _{2}} \ge \bar{d}_i+\hat{d}_i+\sum _{h:(h,i) \in A}f_{hi\delta _{1}(\delta _{2}-\hat{d}_i)}, \ i \in N, i\not \in S^{d}_{1},i \in S^{d}_{2}, 0\le \delta _{1}\le \Delta _1^d, \hat{d}_i\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(63)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\delta _{1}\delta _{2}} \ge \bar{d}_i+\hat{d}_i+\sum _{h:(h,i) \in A}f_{hi(\delta _{1}-\hat{d}_i)(\delta _{2}-\hat{d}_i)}, \ i \in N, i\in S^{d}_{1},i \in S^{d}_{2}, 0\le \delta _{1}\le \Delta _1^d, \hat{d}_i\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(64)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\Delta _1^d\delta _{2}} \ge \bar{d}_i+\lambda +\sum _{h:(h,i) \in A}f_{hi(\Delta _1^d-\lambda )\delta _{2}}, \ i \in N, i\in S^{d}_{1},i \not \in S^{d}_{2}, 0\le \delta _{2}\le \Delta _2^d, 0\le \lambda <\hat{d}_i, \end{aligned}$$
(65)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\delta 1\Delta _2^d} \ge \bar{d}_i+\lambda +\sum _{h:(h,i) \in A}f_{hi\delta _{1}(\Delta _2^d-\lambda )}, \ i \in N, i\not \in S^{d}_{1},i \in S^{d}_{2}, 0\le \delta _{1}\le \Delta _1^d, 0\le \lambda <\hat{d}_i, \end{aligned}$$
(66)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}f_{ij\Delta _1^d\Delta _2^d} \ge \bar{d}_i+\lambda +\sum _{h:(h,i) \in A}f_{hi(\Delta _1^d-\lambda )(\Delta _2^d-\lambda )}, \ i \in N, i\in S^{d}_{1},i \in S^{d}_{2},0\le \lambda <\hat{d}_i, \end{aligned}$$
(67)
$$\begin{aligned}&\displaystyle d_ix_{ij} \le f_{ij\delta _1\delta _2} \le (Q-d_j) x_{ij}, \ (i,j) \in A, 0\le \delta _{1}\le \Delta _1^d,0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(68)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}g_{ij\delta _{1}\delta _{2}} \ge \sum _{\begin{array}{c} h:(h,i) \in A\\ \lambda \le \hat{t}_{hi} \end{array}} (g_{hi(\delta _{1}-\lambda )\delta _{2}}+(\bar{t}_{hi}+\lambda )x_{hi})+s_i, \ i \in N,(i,j)\in S^{t}_{1},(i,j) \not \in S^{t}_{2}, 0\le \lambda \le \delta _{1} \le \Delta _1^t, 0\le \delta _{2} \le \Delta _2^t, \end{aligned}$$
(69)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}g_{ij\delta _{1}\delta _{2}} \ge \sum _{\begin{array}{c} h:(h,i) \in A\\ \lambda \le \hat{t}_{hi} \end{array}} (g_{hi\delta _{1}(\delta _{2}-\lambda )}+(\bar{t}_{hi}+\lambda )x_{hi})+s_i, \ i \in N,(i,j)\not \in S^{t}_{1},(i,j) \in S^{t}_{2}, 0\le \delta _{1} \le \Delta _1^t, 0\le \lambda \le \delta _{2} \le \Delta _2^t, \end{aligned}$$
(70)
$$\begin{aligned}&\displaystyle \sum _{j:(i,j) \in A}g_{ij\delta _{1}\delta _{2}} \ge \sum _{\begin{array}{c} h:(h,i) \in A\\ \lambda \le \hat{t}_{hi} \end{array}} (g_{hi(\delta _{1}-\lambda )(\delta _{2}-\lambda )}+(\bar{t}_{hi}+\lambda )x_{hi})+s_i, \ i \in N,(i,j)\in S^{t}_{1},(i,j) \in S^{t}_{2}, 0\le \lambda \le \delta _{1} \le \Delta _1^t, 0\le \lambda \le \delta _{2} \le \Delta _2^t, \end{aligned}$$
(71)
$$\begin{aligned}&\displaystyle (a_j+s_j)x_{ij}\le g_{ij\delta _{1}\delta _{2}}\le (b_j+s_j)x_{ij}, \ (i,j) \in A, 0\le \delta _{1} \le \Delta _1^t, 0\le \delta _{2} \le \Delta _2^t \end{aligned}$$
(72)
$$\begin{aligned}&x_{ij} \in \{0, 1\}, \ (i,j) \in A, \end{aligned}$$
(73)
$$\begin{aligned}&f_{ij\delta _{1}\delta _{2}} \ge 0, \ (i,j) \in A, 0\le \delta _{1}\le \Delta _1^d, 0\le \delta _{2}\le \Delta _2^d, \end{aligned}$$
(74)
$$\begin{aligned}&g_{ij\delta _{1}\delta _{2}} \ge 0, \ (i,j) \in A, 0\le \delta _{1}\le \Delta _1^t, 0\le \delta _{2}\le \Delta _2^t. \end{aligned}$$
(75)

The interpretation of this model is similar to the previous one, but the variables are related to the arcs and not the nodes.

Appendix 3: Results for customer-per-route ratio

In this section, we present the average results for the customer-per-route ratio discussed in Sect. 5.4. The results are summarized in Table 10, which shows the average ratio for each budget and deviation (Dev) configuration for each uncertainty set. The budgets are displayed in the format \([\Gamma ^d,\Gamma ^t]\) / \([\Delta ^d,\Delta ^t]\) according to the uncertainty set.

Table 10 Average customer-per-route ratio for each budget and deviation level

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, R., Coelho, L.C. & Munari, P. New formulations for the robust vehicle routing problem with time windows under demand and travel time uncertainty. OR Spectrum (2024). https://doi.org/10.1007/s00291-024-00781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00291-024-00781-z

Keywords

Navigation