OR Spectrum

, Volume 38, Issue 2, pp 305–334 | Cite as

A flow-based tabu search algorithm for the RCPSP with transfer times

  • Jens Poppenborg
  • Sigrid KnustEmail author
Regular Article


In this paper, we propose a tabu search algorithm for the resource-constrained project scheduling problem with transfer times. Solutions are represented by resource flows extending the disjunctive graph model for shop scheduling problems. Neighborhoods are defined by parallel and serial modifications rerouting or reversing flow on certain arcs. This approach is evaluated from a theoretical and experimental point of view. Besides studying the connectivity of different neighborhoods, computational results are presented for benchmark instances with and without transfer times.


RCPSP Transfer times Tabu search Resource flow 



We would like to thank Doreen Becker for providing her test instances and results from Krüger (2009) as well as Christoph Schwindt for giving us the code of the branch-and-bound algorithm described in Neumann et al. (2003). Additionally, we are very grateful for the constructive comments of two referees which helped us to improve the presentation of the paper.


  1. Artigues C (2010) The resource-constrained project scheduling problem. In: Artigues C, Demassey S, Néron E (eds) Resource-constrained project scheduling. ISTE, London, pp 19–35Google Scholar
  2. Artigues C, Michelon P, Reusser S (2003) Insertion techniques for static and dynamic resource-constrained project scheduling. Eur J Oper Res 149(2):249–267CrossRefGoogle Scholar
  3. Artigues C, Roubellat F (2000) A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes. Eur J Oper Res 127(2):297–316CrossRefGoogle Scholar
  4. Brucker P, Knust S (2011) Complex scheduling. Springer, BerlinGoogle Scholar
  5. Demeulemeester EL, Herroelen W (2002) Project scheduling: a research handbook. International Series in Operations Research & Management Science. Kluwer Academic Publishers, BostonGoogle Scholar
  6. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345CrossRefGoogle Scholar
  7. Fortemps P, Hapke M (1997) On the disjunctive graph for project scheduling. Found Comput Decis Sci 22(3):195–209Google Scholar
  8. Glover F, Laguna M (1998) Tabu search. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  9. Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207(1):1–14CrossRefGoogle Scholar
  10. Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur J Oper Res 127(2):394–407CrossRefGoogle Scholar
  11. Hurink J, Knust S (2001) List scheduling in a parallel machine environment with precedence constraints and setup times. Oper Res Lett 29(5):231–239CrossRefGoogle Scholar
  12. Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur J Oper Res 90(2):320–333CrossRefGoogle Scholar
  13. Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174(1):23–37CrossRefGoogle Scholar
  14. Kolisch R, Sprecher A (1997) PSPLIB—a project scheduling problem library. Eur J Oper Res 96(1):205–216CrossRefGoogle Scholar
  15. Krüger D (2009) Multi-project scheduling with resource transfers. Books on Demand GmbH, NorderstedtGoogle Scholar
  16. Krüger D, Scholl A (2009) A heuristic solution framework for the resource constrained (multi-) project scheduling problem with sequence-dependent transfer times. Eur J Oper Res 197(2):492–508CrossRefGoogle Scholar
  17. Krüger D, Scholl A (2010) Managing and modelling general resource transfers in (multi-) project scheduling. OR Spectr 32(2):369–394CrossRefGoogle Scholar
  18. Mika M, Waligóra G, Wȩglarz J (2006) Modelling setup times in project scheduling. In: Józefowska J, Wȩglarz J (eds) Perspectives in modern project scheduling, vol 92. Springer, New York, pp 131–163Google Scholar
  19. Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce resources: temporal and resource-constrained project scheduling with regular and nonregular objective functions. Springer, BerlinCrossRefGoogle Scholar
  20. Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop problem. Manag Sci 42(6):797–813CrossRefGoogle Scholar
  21. Poppenborg J (2014) Modeling and optimizing the evacuation of hospitals based on the RCPSP with resource transfers. PhD thesis, Clausthal University of Technology, Clausthal-Zellerfeld, GermanyGoogle Scholar
  22. Roy B, Sussmann B (1964) Les problèmes d’ordonnancement avec constraintes disjonctives. Technical report note D.S. no. 9 bis, SEMA, Paris, FranceGoogle Scholar
  23. Schwindt C, Trautmann N (2000) Batch scheduling in process industries: an application of resource-constrained project scheduling. OR Spectr 22(4):501–524CrossRefGoogle Scholar
  24. Schwindt C, Trautmann N (2003) Scheduling the production of rolling ingots: industrial context, model, and solution method. Int Trans Oper Res 10(6):547–563CrossRefGoogle Scholar
  25. Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. Eur J Oper Res 80(1):94–102CrossRefGoogle Scholar
  26. van Laarhoven PJM, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simulated annealing. Oper Res 40(1):113–125CrossRefGoogle Scholar
  27. Vanhoucke M (2008) Setup times and fast tracking in resource-constrained project scheduling. Comput Ind Eng 5(4):1062–1070CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Applied Stochastics and Operations ResearchClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Institute of Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations