Factor neutral portfolios

Abstract

In this paper, we consider the problem of constructing a factor neutral portfolio (FNP). This is a portfolio of financial assets that exhibits performance independent from a number of underlying factors. We formulate this problem as a mixed-integer linear program, minimising the time-averaged absolute value factor contribution to portfolio return. In this paper, we investigate both ordinary (least-squares, mean) regression and quantile regression, specifically median regression, to estimate factor coefficients. Computational results are given for constructing FNPs using stocks drawn from the Standard and Poor’s 500 index.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Agrawal M, Mohapatra D, Pollak I (2012) Empirical evidence against CAPM: relating alphas and returns to betas. IEEE J Sel Top Signal Process 6(4):298–310

    Article  Google Scholar 

  2. Avellaneda M, Lee J-H (2010) Statistical arbitrage in the US equities market. Quant Financ 10(7):761–782

    Article  Google Scholar 

  3. Carhart MM (1997) On persistence in mutual fund performance. J Financ 52(1):57–82

    Article  Google Scholar 

  4. Faff R (2004) A simple test of the Fama and French model using daily data: Australian evidence. Appl Financ Econ 14(2):83–92

    Article  Google Scholar 

  5. Fama EF, French KR (1993) Common risk factors in the returns on stocks and bonds. J Financ Econ 33(1):3–56

    Article  Google Scholar 

  6. Fama EF, French KR (1996) Multifactor explanations of asset pricing anomalies. J Financ 51(1):55–84

    Article  Google Scholar 

  7. Fama EF, French KR (2004) The Capital Asset Pricing Model: theory and evidence. J Econ Perspect 18(3):25–46

    Article  Google Scholar 

  8. Fama EF, French KR (2012) Size, value, and momentum in international stock returns. J Financ Econ 105(3):457–472

    Article  Google Scholar 

  9. Fang Y, Lai KK, Wang S-Y (2006) Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur J Oper Res 175(2):879–893

    Article  Google Scholar 

  10. French KR (2014) Fama/French factors (weekly). http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html Accessed 17 Jan 2014

  11. Galagedera DUA (2007) A review of capital asset pricing models. Manag Financ 33(10):821–832

    Google Scholar 

  12. Ganesan G (2011) A subspace approach to portfolio analysis: a focus on equity investments. IEEE Signal Process Mag 28(5):49–60

    Article  Google Scholar 

  13. Gharghori P, Chan H, Faff R (2007) Are the Fama–French factors proxying default risk? Aust J Manag 32(2):223–249

    Article  Google Scholar 

  14. Gregory A, Tharyan R, Christidis A (2013) Constructing and testing alternative versions of the Fama–French and Carhart models in the UK. J Bus Financ Account 40(1–2):172–214

  15. Griffin JM (2002) Are the Fama and French factors global or country specific? Rev Financ Stud 15(3):783–803

    Article  Google Scholar 

  16. Gupta P, Mehlawat MK, Saxena A (2010) A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Inf Sci 180(11):2264–2285

    Article  Google Scholar 

  17. Hao J, Naiman DQ (2007) Quantile regression. Sage Publications, London

    Google Scholar 

  18. IBM, ILOG CPLEX (2012). http://cran.r-project.org/web/packages/quantreg/quantreg.pdf. Accessed 17 Jan 2014

  19. Kellerer H, Mansini R, Speranza MG (2000) Selecting portfolios with fixed costs and minimum transaction lots. Ann Oper Res 99:287–304

    Article  Google Scholar 

  20. Koenker R (2013) Package ‘quantreg’. http://cran.r-project.org/web/packages/quantreg/quantreg.pdf. Accessed 17 Jan 2014

  21. Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  Google Scholar 

  22. Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15(4):143–156

    Article  Google Scholar 

  23. Konno H, Koshizuka T (2005) Mean-absolute deviation model. IIE Trans 37(10):893–900

    Article  Google Scholar 

  24. Konno H, Wijayanayake A (2001) Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math Program Ser B 89(2):233–250

    Article  Google Scholar 

  25. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag Sci 37(5):519–531

    Article  Google Scholar 

  26. Kwan CCY (1999) A note on market-neutral portfolio selection. J Bank Financ 23(5):773–799

    Article  Google Scholar 

  27. Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econ Stat 47(1):13–37

    Article  Google Scholar 

  28. Ma Y, MacLean L, Xu K, Zhao Y (2011) A portfolio optimization model with regime-switching risk factors for sector exchange traded funds. Pac J Optim 7(2):281–296

    Google Scholar 

  29. Mansini R, Ogryczak W, Speranza MG (2003) On LP solvable models for portfolio selection. Informatica 14(1):37–62

    Google Scholar 

  30. Mansini R, Ogryczak W, Speranza MG (2014) Twenty years of linear programming based portfolio optimization. Eur J Oper Res 234(2):518–535

    Article  Google Scholar 

  31. Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  32. Meade N, Beasley JE (2011) Detection of momentum effects using an index out-performance strategy. Quant Financ 11(2):313–326

    Article  Google Scholar 

  33. Mezali H, Beasley JE (2013) Quantile regression for index tracking and enhanced indexation. J Oper Res Soc 64(11):1676–1692

    Article  Google Scholar 

  34. Pai GAV, Michel T (2012) Differential evolution based optimization of risk budgeted equity market neutral portfolios. In: Proceedings of WCCI’12, IEEE world congress on computational intelligence (IEEE-WCCI). IEEE, New York

  35. Patton AJ (2009) Are “market neutral” hedge funds really market neutral? Rev Financ Stud 22(7):2495–2530

    Article  Google Scholar 

  36. Rudolf M, Wolter H-J, Zimmermann H (1999) A linear model for tracking error minimization. J Bank Financ 23(1):85–103

    Article  Google Scholar 

  37. Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditions of risk. J Financ 19(3):425–442

    Google Scholar 

  38. Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138

    Article  Google Scholar 

  39. Sharpe WF (1975) Adjusting for risk in portfolio performance measurement. J Portf Manag 1(2):29–34

  40. Sharpe WF (1994) The Sharpe ratio. J Portf Manag 21(1):49–58

  41. Speranza MG (1996) A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Comput Oper Res 23(5):433–441

    Article  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimisation over continuous spaces. J Glob Optim 11(4):341–359

    Article  Google Scholar 

  43. Treynor J (1961) Towards a theory of market value of risky assets. (Unpublished manuscript). doi:10.2139/ssrn.628187. Accessed 17 Jan 2014

  44. Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research areas. Statistician 52(3):331–350

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the comments made upon an earlier version of this paper by the referees.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. E. Beasley.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valle, C.A., Meade, N. & Beasley, J.E. Factor neutral portfolios. OR Spectrum 37, 843–867 (2015). https://doi.org/10.1007/s00291-015-0392-0

Download citation

Keywords

  • Factor neutral portfolio
  • Fama and French three-factor model
  • Portfolio construction
  • Quantile regression