Skip to main content

Pareto navigator for interactive nonlinear multiobjective optimization

Abstract

We describe a new interactive learning-oriented method called Pareto navigator for nonlinear multiobjective optimization. In the method, first a polyhedral approximation of the Pareto optimal set is formed in the objective function space using a relatively small set of Pareto optimal solutions representing the Pareto optimal set. Then the decision maker can navigate around the polyhedral approximation and direct the search for promising regions where the most preferred solution could be located. In this way, the decision maker can learn about the interdependencies between the conflicting objectives and possibly adjust one’s preferences. Once an interesting region has been identified, the polyhedral approximation can be made more accurate in that region or the decision maker can ask for the closest counterpart in the actual Pareto optimal set. If desired, (s)he can continue with another interactive method from the solution obtained. Pareto navigator can be seen as a nonlinear extension of the linear Pareto race method. After the representative set of Pareto optimal solutions has been generated, Pareto navigator is computationally efficient because the computations are performed in the polyhedral approximation and for that reason function evaluations of the actual objective functions are not needed. Thus, the method is well suited especially for problems with computationally costly functions. Furthermore, thanks to the visualization technique used, the method is applicable also for problems with three or more objective functions, and in fact it is best suited for such problems. After introducing the method in more detail, we illustrate it and the underlying ideas with an example.

This is a preview of subscription content, access via your institution.

References

  • Benayoun R, de Mongolfier J, Tergny J, Larichev O (1971) Linear programming with multiple objective functions: STEP method (STEM). Math Program 1: 366–375

    Article  Google Scholar 

  • Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology. Elsevier, New York

    Google Scholar 

  • Craft D (2007) Pareto Surface Navigator. http://www.mathworks.com/matlabcentral, File Id: 13875

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    Google Scholar 

  • Hwang C-L, Masud ASM (1979) Multiple objective decision making—methods and applications: a state-of-the-art survey. Lecture notes in economics and mathematical systems, vol 164. Springer, Berlin

    Google Scholar 

  • Jaszkiewicz A, Slowiński R (1999) The light beam search approach—an overview of methodology and applications. Eur J Oper Res 113: 300–314

    Article  Google Scholar 

  • Kaliszewski I (2004) Out of the mist—towards decision-maker-friendly multiple criteria decision making support. Eur J Oper Res 158: 293–307

    Article  Google Scholar 

  • Klamroth K, Miettinen K (2008) Integrating approximation and interactive decision making in multicriteria optimization. Oper Res 56(1): 222–234

    Article  Google Scholar 

  • Klamroth K, Tind J, Wiecek MM (2002) Unbiased approximation in multicriteria optimization. Math Meth Oper Res 56: 413–437

    Google Scholar 

  • Köksalan M, Plante RD (2003) Interactive multicriteria optimization for multiple-response product and process design. Manuf Serv Oper Manage 5: 334–347

    Article  Google Scholar 

  • Korhonen P, Wallenius J (1988) A Pareto race. Naval Res Logist 35: 615–623

    Article  Google Scholar 

  • Lotov AV, Bushenkov VA, Kamenev GK (2004) Interactive decision maps. Approximation and visualization of Pareto frontier. Kluwer, Dordrecht

    Google Scholar 

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    Google Scholar 

  • Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34: 231–246

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW-NIMBUS on the internet. Comput Oper Res 27: 709–723

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectr 24: 193–213

    Article  Google Scholar 

  • Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170: 909–922

    Article  Google Scholar 

  • Monz M, Küfer KH, Bortfeld TR, Thieke C (2008) Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol 53: 985–998

    Article  Google Scholar 

  • Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Heidelberg, pp 113–122

    Google Scholar 

  • Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optim Theory Appl 126: 473–501

    Article  Google Scholar 

  • Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, New York

    Google Scholar 

  • Steuer RE (1986) Multiple criteria optimization: theory, computation and applications. Wiley, New York

    Google Scholar 

  • Vanderpooten D (1989) The interactive approach in MCDA: a technical framework and some basic concceptions. Math Comput Modell 12(10–11): 1213–1220

    Article  Google Scholar 

  • Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and applications. Springer, Berlin, pp 468–486

    Google Scholar 

  • Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Modell 3(25): 391–405

    Article  Google Scholar 

  • Wierzbicki AP (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8(2): 73–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri Eskelinen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eskelinen, P., Miettinen, K., Klamroth, K. et al. Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectrum 32, 211–227 (2010). https://doi.org/10.1007/s00291-008-0151-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-008-0151-6

Keywords

  • Multicriteria optimization
  • MCDM
  • Interactive methods
  • Decision support
  • Pareto optimality