Skip to main content

Advertisement

Log in

Characterization of mechanical, dielectric, EMI shielding properties of abaca bract biocarbon and pineapple fiber reinforced rigid vinyl ester composite

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The primary goal of the research is to develop a resilient material for electromagnetic interference (EMI) shielding. This study investigates the mechanical, dielectric, and electromagnetic interference (EMI) shielding properties of a composite material reinforced with biocarbon extracted from abaca bract and pineapple fiber in a rigid vinyl ester matrix. The biocarbon is obtained through a pyrolysis process, ensuring its origin from sustainable sources. The fabrication process involves employing the hand layup method, adhering to ASTM standards for comprehensive characterization. Among the fabricated composites, VB3, featuring 2 vol% of biocarbon and 40 vol% of pineapple mat fiber, stands out for exhibiting superior mechanical properties. It achieves a tensile strength of 143 MPa, flexural strength of 184 MPa, compression strength of 161 MPa, and impact energy of 4.31 J. Conversely, VB4, with a higher volume of biocarbon, experiences a slight reduction in mechanical properties attributed to biocarbon agglomeration, while showcasing an enhanced Shore-D hardness of 82. Silane treatment of both pineapple fiber and biocarbon contributes to improved adhesion in the matrix. In terms of electromagnetic interference (EMI) shielding, VB4 surpasses others, delivering maximum shielding effectiveness with total shielding values of 11.18 dB, 30.53 dB, 54.16 dB, and 65.51 dB for frequency bands at 8 GHz, 12 GHz, 16 GHz, and 20 GHz. Similarly, in dielectric properties, VB4 outperforms other designations with a dielectric constant of 9.8, 7.4, 5.8, 4.5, and dielectric loss values of 0.15, 0.31, 0.42, and 0.5 for the respective frequency bands. Moreover, increased biocarbon content further enhances the hydrophobic behavior of the matrix in VB4, achieving a water contact angle of 97°.These findings highlight the multifunctional capabilities of VB4, demonstrating not only superior mechanical strength and EMI shielding but also enhanced dielectric properties and hydrophobic nature. The comprehensive approach to incorporating biocarbon and pineapple fiber, coupled with silane treatment, contributes to the overall performance and versatility of the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data within the manuscript. No more additional data is available.

References

  1. Chang Y, Hao R, Yang Y, Zhao G, Liu Y, Duan H (2023) Progressive conductivity modular assembled fiber reinforced polymer composites for absorption dominated ultraefficient electromagnetic interference shielding. Compos B Eng 260:110766. https://doi.org/10.1016/j.compositesb.2023.110766

    Article  CAS  Google Scholar 

  2. Khan T, Khalid MY, Andrew JJ, Ali MA, Zheng L, Umer R (2023) Co-cured GNP films with liquid thermoplastic/glass fiber composites for superior EMI shielding and impact properties for space applications. Compos Commun 44:101767. https://doi.org/10.1016/j.coco.2023.101767

    Article  Google Scholar 

  3. Song S, Li L, Ji D, Zhao J, Wu Q, Wang Q (2023) Flexible basalt fiber/aramid nanofiber/carbon nanotube electromagnetic shielding paper with outstanding environmental stability and joule heating performance. ACS Appl Mater Interfaces 15(29):35495–35506. https://doi.org/10.1021/acsami.3c06138

    Article  CAS  PubMed  Google Scholar 

  4. Singh AP, Zafar S, Suman S, Pathak H (2024) Mechanical and electromagnetic interference shielding properties of natural fiber reinforced polymer composite with carbon nanotubes addition. Polym Compos. https://doi.org/10.1002/pc.28075

    Article  Google Scholar 

  5. Albert AA, Parthasarathy V, Kumar PS (2024) Review on recent progress in epoxy-based composite materials for electromagnetic interference (EMI) shielding applications. Polym Compos. https://doi.org/10.1002/pc.27928

    Article  Google Scholar 

  6. Mylsamy G, Krishnasamy P (2023) A review on electrical properties of fiber-reinforced polymer material: fabrication, measurement, and performances. Trans Indian Inst Met 76(7):1–18. https://doi.org/10.1007/s12666-023-02888-3

    Article  CAS  Google Scholar 

  7. Jeevakumari SA, Ramadoss R, Indhumathi K, Gnanasekar AK (2022) Cocos nucifera husk biocarbon and FeSi3 on EMI shielding behavior of PVA composites. Biomass Convers Biorefinery 1–7. https://doi.org/10.1007/s13399-022-03475-0

  8. Babu M, Bapu BT, Muruganantham P, Anita R, Nagaraju V, Kumar PS (2023) Role of cashew shell biochar on EMI shielding behaviour of carbon fibre–epoxy nanocomposites in E, F, I and J band–microwave frequencies. Biomass Convers Biorefinery 13(1):375–382. https://doi.org/10.1007/s13399-022-02617-8

    Article  CAS  Google Scholar 

  9. Kanchana K, Anoop KJ, Vinod VP, Kavitha KK (2023) Effect of porous coffee ground biochar on EMI shielding effectiveness of coconut spathe rachilla long fibre-reinforced lightweight vinyl ester biocomposite. Biomass Convers Biorefinery 1–10. https://doi.org/10.1007/s13399-023-04626-7

  10. Qian Y, Kuang Y, Zhang Y, Wei Y, Liu Y, Wang C, Chen G (2023) High-value utilization of pineapple leaf fibers towards high-performance electromagnetic shielding materials. Mater Today Nano 24:100393. https://doi.org/10.1016/j.mtnano.2023.100393

    Article  CAS  Google Scholar 

  11. Selvaraj VK, Subramanian J, Jayamani E, Viswanath S, Pandurengan K, Siddharth S, Lal PJ (2023) A comparative study on biocomposites for electromagnetic interference shielding applications: a green initiative for environmental sustainability. J Mater Res Technol 26:5786–5800. https://doi.org/10.1016/j.jmrt.2023.08.290

    Article  CAS  Google Scholar 

  12. Lin G, Zhou T, Zhou Z, Sun W (2023) Laser induced graphene for EMI shielding and ballistic impact damage detection in basalt fiber reinforced composites. Compos Sci Technol 242:110182. https://doi.org/10.1016/j.compscitech.2023.110182

    Article  CAS  Google Scholar 

  13. Permata D, Widyawati W, Sinaga HH, Purwasih N, Widiarto S (2023) Study of electrical volume-conductivity, tensile strength, and electromagnetic shielding effectiveness of coconut fiber composite. Int J Appl Electromagn Mech 73(2):1–8. https://doi.org/10.3233/JAE-220295

    Article  Google Scholar 

  14. Wondimu A, Kebede M, Palani S (2022) Trash pineapple leaf fiber reinforced polymer composite materials for light applications. In: Palanikumar K, Thiagarajan R, Latha B (eds) Bio-fiber reinforced composite materials: mechanical, thermal and tribological properties. Springer Nature Singapore, Singapore, pp 13–30. https://doi.org/10.1007/978-981-16-8899-7_2

    Chapter  Google Scholar 

  15. Potnuri R, Surya DV, Rao CS, Yadav A, Sridevi V, Remya N (2023) A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass. J Anal Appl Pyrolysis 173:106094. https://doi.org/10.1016/j.jaap.2023.106094

    Article  CAS  Google Scholar 

  16. Kaliappan S, Natrayan L, Kumar, Arul Kumar PV, Raturi A (2023) Mechanical, fatigue, and hydrophobic properties of silane-treated green pea fiber and egg fruit seed powder epoxy composite. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-023-04534-w

  17. Shakir MH, Singh AK (2024) Mechanical properties, surface treatments, and applications of jute fiber reinforced composites—a review. Polym Adv Technol 35(1):e6268. https://doi.org/10.1002/pat.6268

    Article  CAS  Google Scholar 

  18. Bourchak M, Ajaj R, Khalid M, Juhany KAVR, Arun, Prakash, Alshahrani MH (2023) Development of light weight sustainable pineapple/kevlar hybridized fiber and peanut husk cellulose toughened vinyl ester biocomposite for unmanned aerial vehicle applications. J Vinyl Add Tech 29(3):448–457. https://doi.org/10.1002/vnl.21990

    Article  CAS  Google Scholar 

  19. Gokilakrishnan G, Uvaraja VC (2024) Mechanical, wear, and flammability of chitin-rich endoskeleton of Sepioteuthis Sepioidea powder-dispersed pineapple fiber-reinforced polyester composite. Biomass Convers and Biorefinery 1–10. https://doi.org/10.1007/s13399-024-05345-3

  20. Hymlin Rose SG, Kuppusamy PG, Tapas Bapu BR, Ponnusamy M (2023) Development of highly conductive hybrid Ni-biocarbon-based polyvinyl alcohol composites for microwave shielding properties. J Vinyl Add Tech 29(3):427–434. https://doi.org/10.1002/vnl.21985

    Article  CAS  Google Scholar 

  21. Jun MJ, Kang JH, Sakthiabirami K, Hosseini Toopghara SA, Kim YS, Yun KD, Park SW (2023) The impact of particle size and surface treatment of zirconia suspension for photocuring additive manufacturing. Mater 16(4):1670. https://doi.org/10.3390/ma16041670

    Article  CAS  Google Scholar 

  22. Ghafoor B, Farooq U, Schrekker HS, Amico SC (2023) Thermomechanical properties of imidazolium ionic liquid-modified mwcnt/carbon fiber/epoxy hybrid composite laminates. J Compos Mater 57(13):2219–2230. https://doi.org/10.1177/00219983231170304

    Article  CAS  Google Scholar 

  23. Kesavakannan M, Vasudevan R (2023) Structural performance of hybrid FRP laminates on concrete beams made with manufactured sand. Matéria 28:e20230186. https://doi.org/10.1590/1517-7076-RMAT-2023-0186

    Article  CAS  Google Scholar 

  24. Raji S, Sharma GK, Aranya BR, Prabhakaran K (2023) Carbon composite foams from the wasted banana leaf for EMI shielding and thermal insulation. Carbon 213:118259. https://doi.org/10.1016/j.carbon.2023.118259

    Article  CAS  Google Scholar 

  25. Ramesh Babu B, Rao AB (2023) Electromagnetic interference shielding effect of stacked aloe vera, silk fabric, and copper slag–embedded epoxy composite at high-frequency bands. Biomass Convers Biorefinery 1–7. https://doi.org/10.1007/s13399-023-03852-3

  26. Sivakumar K, Suvitha S, kanna SR, Ponnusamy M (2023) Development of peanut husk carbon quantum dots and ferrite foil epoxy composite for EMI shielding at high frequency bands. Biomass Convers Biorefinery 13(6):5435–5443. https://doi.org/10.1007/s13399-022-03469-y

    Article  CAS  Google Scholar 

  27. Saravanan A, Thirumurugan P, Rajeshkannan S, Sridhar S (2023) Effect of corn cob carbon quantum dots and areca husk microfiber on EMI shielding effectiveness of flexible PVA thin film at 8–20GHz frequency bands. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-023-03867-w

  28. Subbayamma G, Reddy DRK (2023) Development of flexible PVA EMI shielding composite using areca microfiber, cobalt, and potato peel biochar particle. Biomass Convers Biorefinery 1–10. https://doi.org/10.1007/s13399-023-03943-1

  29. Yusof NAT, Zainol N, Aziz NH, Karim MSA (2023) Effect of Fiber Morphology and Elemental Composition of Ananas comosus Leaf on Cellulose Content and Permittivity. Curr Appl Sci Technol 23(6):10–55003. https://doi.org/10.55003/cast.2023.06.23.002

    Article  Google Scholar 

  30. Srinivasan DR, Nagabhooshanam N, Verma R, Kumar DS, Raffiunnisa, Prakash G (2023) Characterization of PVA composites for EMI shielding using waste jackfruit husk biocarbon and Plectranthus amboinicus extracted cobalt nanoparticle. Biomass Convers Biorefinery 1–12. https://doi.org/10.1007/s13399-023-05153-1

  31. Ramakrishnan M, Ramasubramanian S, Raman S, Chinnapalanichamy J (2023) Evaluation of the physical, mechanical, water absorption, and tribological behavior of pineapple leaf fiber/roselle fiber reinforced vinyl ester hybrid composites for non-structural applications. Polym Compos 44(8):5284–5295. https://doi.org/10.1002/pc.27491

    Article  CAS  Google Scholar 

  32. Marrot L, Zouari M, Schwarzkopf M, DeVallance DB (2023) Sustainable biocarbon/tung oil coatings with hydrophobic and UV-shielding properties for outdoor wood substrates. Prog Org Coat 177:107428. https://doi.org/10.1016/j.porgcoat.2023.107428

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Balajikrishnabharathi A involved in experimental research work. D Jayabalakrishnan involved in testing, data interpretation and manuscript writing.

Corresponding author

Correspondence to A. Balajikrishnabharathi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balajikrishnabharathi, A., Jayabalakrishnan, D. Characterization of mechanical, dielectric, EMI shielding properties of abaca bract biocarbon and pineapple fiber reinforced rigid vinyl ester composite. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05301-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05301-1

Keywords

Navigation