Skip to main content
Log in

Experimental studies on high-velocity impact of sandwich luffa/Kevlar fiber epoxy composites with nanofiller inclusion

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This investigation aims to figure out the contribution of nanoparticles graphene on the high-velocity impact performance and viscoelastic behavior of luffa cylindrica fiber (LCF)/Kevlar sandwich laminates. The epoxy matrix was altered through a mechanical stirring approach by adding varied wt% of the nanofiller graphene. The graphene-added Kevlar/LCF sandwich epoxy composites were created by hot pressing. The mechanical and viscoelastic performance of the sandwich composites was evaluated. The mechanical characteristics of the 3 wt% filler incorporated sandwich composites exceeded those of the control sample. The mechanical characteristics of the sandwich composites with 3 wt% filler incorporated showed improvements of 27.54%, 25.26%, and 26.05%, respectively, for (tensile, flexural and interlaminar shear strength) in contrast to the control sample. Morphological evaluation was executed on the samples being tested to determine the source of the breakage. The micrograph photographs revealed that the 3 wt% nanoparticles incorporated sandwich laminates had the best interfacial bonding and the least fiber disengagement. Dynamic mechanical analysis (DMA) was employed on the generated sandwich composites. The DMA findings revealed that sandwich laminates with 3 wt% nanoparticles responded with improved viscoelastic performance. The capability of the Kevlar/luffa fiber laminates using nanographene in addition to absorbing energy was assessed through a ballistic impact test. It was revealed that integrating nanographene into Kevlar/luffa sandwich composites enhanced their resistance to impact. It was seen from the ballistic impact tests that the presence of 3 wt% nanofiller resulted in substantial energy absorption. The composite sample with 3 wt% filler excels over the control sample by 68.80% in terms of energy absorption. In addition, the optimal wt% graphene nanofiller composite samples could be used to manufacture helmets for ground personnel due to their good mechanical and energy absorption capabilities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Stephen C, Shivamurthy B, Mourad AHI et al (2022) Experimental and finite element study on high-velocity impact resistance and energy absorption of hybrid and non-hybrid fabric reinforced polymer composites. J Mater Res Technol 18:5406–5418. https://doi.org/10.1016/j.jmrt.2022.05.007

    Article  CAS  Google Scholar 

  2. Mousavi MV, Khoramishad H (2020) Investigation of energy absorption in hybridized fiber-reinforced polymer composites under high-velocity impact loading. Int J Impact Eng 146:1036–1046. https://doi.org/10.1016/j.ijimpeng.2020.103692

    Article  Google Scholar 

  3. Ashok KG, Kalaichelvan K (2020) Mechanical, ballistic impact, and water absorption behavior of luffa/graphene reinforced epoxy composites. Polym Compos 44:4716–4726. https://doi.org/10.1002/pc.25745

    Article  CAS  Google Scholar 

  4. Naveen J, Jawaid M, Zainudin ES et al (2019) Effect of graphene nanoplatelets on the ballistic performance of hybrid Kevlar/Cocos nucifera sheath-reinforced epoxy composites. Text Res J 89:4349–4362. https://doi.org/10.1177/0040517519833970

    Article  CAS  Google Scholar 

  5. Khalid MY, Arif ZU, Sheikh MF, Nasir MA (2021) Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. Int J Mater Form 14:1085–1095. https://doi.org/10.1007/s12289-021-01624-w

    Article  Google Scholar 

  6. Yasir M, Al A, Ullah Z et al (2021) Results in engineering tensile strength evaluation of glass/jute fi bers reinforced composites: an experimental and numerical approach. Results Eng 10:1002–1032. https://doi.org/10.1016/j.rineng.2021.100232

    Article  CAS  Google Scholar 

  7. Ashok KG, Vetrivel Sezhian M, Karthik K et al (2022) Energy absorption performance of Kevlar/snake grass fiber composites under ballistic impact test with nano Al2O3 inclusion. Polym Compos 43:6082–6095. https://doi.org/10.1002/pc.26911

    Article  CAS  Google Scholar 

  8. Ashok KG, Kani K (2021) Experimental studies on interlaminar shear strength and dynamic mechanical analysis of luffa fiber epoxy composites with nano PbO addition. J Ind Text 51:3829–3854. https://doi.org/10.1177/15280837211052317

    Article  CAS  Google Scholar 

  9. Adeyanju CA, Ogunniyi S, Ighalo JO et al (2021) A review on Luffa fibres and their polymer composites. J Mater Sci 56:2797–2813. https://doi.org/10.1007/s10853-020-05432-6

    Article  CAS  Google Scholar 

  10. Ashok KG, Kalaichelvan K, Damodaran A (2020) Effect of nano fillers on mechanical properties of luffa fiber epoxy composites. J Nat Fibers 19:1472–1489. https://doi.org/10.1080/15440478.2020.1779898

    Article  CAS  Google Scholar 

  11. Daniel-Mkpume CC, Ugochukwu C, Okonkwo EG et al (2019) Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy. Int J Adv Manuf Technol 102:3439–3444. https://doi.org/10.1007/s00170-019-03422-w

    Article  Google Scholar 

  12. Mohanta N, Acharya SK (2018) Effect of alkali treatment on the flexural properties of a Luffa cylindrica-reinforced epoxy composite. Sci Eng Compos Mater 25:85–93. https://doi.org/10.1515/secm-2015-0148

    Article  CAS  Google Scholar 

  13. Naveen J, Jawaid M, Zainudin ES et al (2019) Evaluation of ballistic performance of hybrid Kevlar®/Cocos nucifera sheath reinforced epoxy composites. J Text Inst 110:1179–1189. https://doi.org/10.1080/00405000.2018.1548801

    Article  CAS  Google Scholar 

  14. Maharana SM, Pradhan AK, Pandit MK (2020) Performance evaluation of mechanical properties of nanofiller reinforced jute-kevlar hybrid composite. J Nat Fibers 19:984–998. https://doi.org/10.1080/15440478.2020.1777246

    Article  CAS  Google Scholar 

  15. Jesuarockiam N, Jawaid M, Zainudin ES et al (2019) Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 11:875–887. https://doi.org/10.3390/polym11071085

    Article  CAS  Google Scholar 

  16. Doǧan NF, Bulut M, Erkliǧ A, Bozkurt OY (2019) Mechanical and low velocity impact characterization of carbon/glass hybrid composites with graphene nanoplatelets. Mater Res Express 6:1–15. https://doi.org/10.1088/2053-1591/ab1c03

    Article  CAS  Google Scholar 

  17. Alsaadi M, Younus B, Erklig A et al (2021) Effect of graphene nano-platelets on mechanical and impact characteristics of carbon/Kevlar reinforced epoxy hybrid nanocomposites. Proc Inst Mech Eng Part C J Mech Eng Sci 235:7139–7151. https://doi.org/10.1177/09544062211016883

    Article  CAS  Google Scholar 

  18. Ganapathy T, Sathiskumar R, Sanjay MR et al (2019) Effect of graphene powder on banyan aerial root fibers reinforced epoxy composites. J Nat Fibers 18:1029–1036. https://doi.org/10.1080/15440478.2019.1675219

    Article  CAS  Google Scholar 

  19. Khan NI, Halder S, Das S, Goyat MS (2021) Graphitic nanoparticles functionalized with epoxy moiety for enhancing the mechanical performance of hybrid carbon fiber reinforced polymer laminated composites. Polym Compos 42:678–692. https://doi.org/10.1002/pc.25857

    Article  CAS  Google Scholar 

  20. Erkliğ A, Doğan NF (2020) Nanographene inclusion effect on the mechanical and low velocity impact response of glass/basalt reinforced epoxy hybrid nanocomposites. J Braz Soc Mech Sci Eng 42:245–261. https://doi.org/10.1007/s40430-019-2168-y

    Article  CAS  Google Scholar 

  21. Yahaya R, Sapuan SM, Jawaid M et al (2014) Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites. Mater Des 63:775–782. https://doi.org/10.1016/j.matdes.2014.07.010

    Article  Google Scholar 

  22. Sathishkumar TP, Muralidharan M, Ramakrishnan S et al (2021) Mechanical strength retention and service life of Kevlar fiber woven mat reinforced epoxy laminated composites for structural applications. Polym Compos 42:1855–1866. https://doi.org/10.1002/pc.25940

    Article  CAS  Google Scholar 

  23. Sharma S, Dhakate SR, Majumdar A, Singh BP (2019) Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites. Carbon N Y 152:631–642. https://doi.org/10.1016/j.carbon.2019.06.055

    Article  CAS  Google Scholar 

  24. Chinnasamy V, Subramani SP, Palaniappan SK et al (2020) Characterization on thermal properties of glass fiber and kevlar fiber with modified epoxy hybrid composites. J Mater Res Technol 9:3158–3167. https://doi.org/10.1016/j.jmrt.2020.01.061

    Article  CAS  Google Scholar 

  25. Querido VA, d’Almeida JRM, Silva FA (2019) Development and analysis of Sponge Gourd (Luffa cylindrica L.) fiber-reinforced cement composites. BioResources 14:9981–9993. https://doi.org/10.15376/biores.14.4.9981-9993

    Article  CAS  Google Scholar 

  26. Ashok KG, Sathish Kumar GK, Kalaichelvan K et al (2022) Calotropis gigantea stem fiber reinforced thermoset plastics: Interlaminar shear strength and related tribo-mechanical properties. Proc Inst Mech Eng Part L J Mater Des Appl 237:886–905. https://doi.org/10.1177/14644207221129292

    Article  CAS  Google Scholar 

  27. Sherwani SFK, Sapuan SM, Leman Z et al (2021) Physical, mechanical and morphological properties of sugar palm fiber reinforced polylactic acid composites. Fibers Polym 22:3095–3105. https://doi.org/10.1007/s12221-021-0407-1

    Article  CAS  Google Scholar 

  28. Rajesh M, Pitchaimani J (2016) Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite. J Reinf Plast Compos 35:228–242. https://doi.org/10.1177/0731684415611973

    Article  CAS  Google Scholar 

  29. Negawo TA, Polat Y, Buyuknalcaci FN et al (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597. https://doi.org/10.1016/j.compstruct.2018.09.043

    Article  Google Scholar 

  30. ASTM (2019) E3107 standard test method for resistance to penetration and backface deformation for ballistic-resistant torso body armor and shoot packs. ASTM E3107:1–9. https://doi.org/10.1520/E3107-17.Copyright

    Article  Google Scholar 

  31. Haro EE, Szpunar JA, Odeshi AG (2018) Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Def Technol 14:238–249. https://doi.org/10.1016/j.dt.2018.03.005

    Article  Google Scholar 

  32. Ramakrishnan S, Krishnamurthy K, Rajasekar R, Rajeshkumar G (2019) An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites. J Ind Text 49:597–620. https://doi.org/10.1177/1528083718792915

    Article  CAS  Google Scholar 

  33. Wan Ramli WMA, Abdul Majid MS, Ridzuan MJM et al (2020) The effect of nanomodified epoxy on the tensile and flexural properties of Napier fiber reinforced composites. Polym Compos 41:824–837. https://doi.org/10.1002/pc.25413

    Article  CAS  Google Scholar 

  34. Saba N, Paridah AK, Ibrahim NA (2016) Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater 124:133–138. https://doi.org/10.1016/j.conbuildmat.2016.07.059

    Article  CAS  Google Scholar 

  35. Dang CY, Shen XJ, Nie HJ et al (2019) Enhanced interlaminar shear strength of ramie fiber/polypropylene composites by optimal combination of graphene oxide size and content. Compos Part B Eng 168:488–495. https://doi.org/10.1016/j.compositesb.2019.03.080

    Article  CAS  Google Scholar 

  36. Zaer-Miri S, Khosravi H (2019) Assessment of the wear behavior and interlaminar shear properties of modified nano-TiO2/jute fiber/epoxy multiscale composites. J Ind Text 51:1084–1099. https://doi.org/10.1177/1528083719893718

    Article  CAS  Google Scholar 

  37. Hallad SA, Banapurmath NR, Hunashyal AM et al (2017) Experimental investigation for graphene and carbon fibre in polymer-based matrix for structural applications. J Appl Res Technol 15:297–302. https://doi.org/10.1016/j.jart.2017.01.014

    Article  Google Scholar 

  38. Dadkar N, Tomar BS, Satapathy BK (2009) Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Mater Des 30:4369–4376. https://doi.org/10.1016/j.matdes.2009.04.007

    Article  CAS  Google Scholar 

  39. Shahroze RM, Ishak MR, Salit MS et al (2019) Sugar palm fiber/polyester nanocomposites: influence of adding nanoclay fillers on thermal, dynamic mechanical, and physical properties. J Vinyl Addit Technol. https://doi.org/10.1002/vnl.21736

    Article  Google Scholar 

  40. Gheith MH, Aziz MA, Ghori W et al (2019) Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J Mater Res Technol 8:445–461. https://doi.org/10.1016/j.jmrt.2018.06.013

    Article  CAS  Google Scholar 

  41. Vimalanathan P, Venkateshwaran N, Santhanam V (2016) Mechanical, dynamic mechanical and thermal analysis of shorea robusta dispersed polyester composite. Int J Polym Anal Charact 11:5341–5357. https://doi.org/10.1080/1023666X.2016.1155818

    Article  CAS  Google Scholar 

  42. Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr Build Mater 123:15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131

    Article  CAS  Google Scholar 

  43. Siqueira ÉJ, Botaro VR (2013) Luffa cylindrica fibres/vinylester matrix composites: Effects of 1,2,4,5-benzenetetracarboxylic dianhydride surface modification of the fibres and aluminum hydroxide addition on the properties of the composites. Compos Sci Technol 82:76–83. https://doi.org/10.1016/j.compscitech.2013.04.012

    Article  CAS  Google Scholar 

  44. Toorchi D, Khosravi H, Tohidlou E (2021) Synergistic effect of nano-ZrO2/graphene oxide hybrid system on the high-velocity impact behavior and interlaminar shear strength of basalt fiber/epoxy composite. J Ind Text 51:277–296. https://doi.org/10.1177/1528083719879922

    Article  CAS  Google Scholar 

  45. Dias RR, Zattera AJ, Pereira IM, Soares BG (2021) Ballistic impact performance of composite laminates based on high-density polyethylene/montmorillonite nanocomposite and Aramide fiber. Polym Compos 42:5586–5597. https://doi.org/10.1002/pc.26249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science & Technology, Government of India, for funding the Research Infrastructure under the Scheme entitled "Funds for the Improvement of S&T Infrastructure (DST-FIST)" Ref. No. SR/FST/College – 110/2017 for Easwari Engineering College.

Author information

Authors and Affiliations

Authors

Contributions

KGA contributed to conceptualization, writing—original draft and data curation. KK involved in supervision, formal analysis and visualization. KGA involved in investigation and writing—review and editing.

Corresponding author

Correspondence to K. G. Ashok.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, K.G., Kalaichelvan, K. & Anbarasu, K.G. Experimental studies on high-velocity impact of sandwich luffa/Kevlar fiber epoxy composites with nanofiller inclusion. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05290-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05290-1

Keywords

Navigation