Skip to main content

Advertisement

Log in

Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA), a highly promising biodegradable biopolymer, has been extensively studied over the last two decades. The thermoplastic polyester PLA is bio-based, compostable, and eco-friendly. Its monomer, lactic acid, is fermented from renewable plant sources like starch and sugar. Therefore, PLA is regarded as a desirable substitute for conventional petroleum-based polymers. Because of its biocompatible and biodegradable properties, U.S. FDA (Food and Drug Administration) has approved PLA as a biomedical material. PLA has excellent mechanical, physical, structural, and thermal properties, making it suitable for various applications. However, PLA has limitations such as low impact toughness, hydrophobicity, and slow degradation rate at ambient temperatures. This can be improved by different modification methods, such as copolymerization, making composites or blends of PLA with other biodegradable polymers, or incorporating additives. This review presents information about the various methods of synthesis of PLA, its properties, and the environmental degradation of PLA. In addition, the different processing techniques of PLA are also reviewed. Lastly, the applications of PLA in sectors such as packaging, biomedical, agricultural, automotive, and textile are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

PLA:

Polylactic acid

FDA:

Food and Drug Administration

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PGA:

Polyglycolic acid

PCL:

Polycaprolactone

PBSA:

Polybutylene succinate-co-adipate

LA:

Lactic acid

PDLLA:

Poly-D, L-lactic acid

ROP:

Ring-opening polymerization

Sn(Oct)2 :

Stannous octoate

PHAs:

Polyhydroxyalkanoates

PEG:

Polyethylene glycol

THF:

Tetrahydrofuran

PLLA:

Poly-L-lactic acid

PDLA:

Poly-D- lactic acid

Tg :

Glass transition temperature

Tm :

Melting temperature

Mw :

Molecular Weight

PVC:

Polyvinyl chloride

PP:

Polypropylene

PS:

Polystyrene

DSC:

Differential Scanning Calorimetry

PET:

Polyethylene terephthalate

ISBM:

Injection stretch blow molding

OPS:

Oriented polystyrene

PDS:

Polydioxanone

PLGA:

Poly lactic-co-glycolic acid

DOX:

Doxorubicin

CNT:

Carbon nanotube

PBAT:

Polybutylene adipate terephthalate

ABS:

Acrylonitrile butadiene styrene

PBT:

Polybutylene terephthalate

References

  1. European-Bioplastics.Org/Market (2022)

  2. European, Bioplastics (2022) Bioplastics facts and figures

  3. Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res 3(2):60–70. https://doi.org/10.1016/j.aiepr.2020.01.002

    Article  Google Scholar 

  4. Ramezani Dana H, Ebrahimi F (2023) Synthesis, properties, and applications of polylactic acid-based polymers. Polym Eng Sci 63(1):22–43. https://doi.org/10.1002/pen.26193

    Article  CAS  Google Scholar 

  5. Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Li Y (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023. https://doi.org/10.3390/molecules25215023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res 3(1):27–35. https://doi.org/10.1016/j.aiepr.2019.11.002

    Article  Google Scholar 

  7. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:1–16. https://doi.org/10.1186/2194-0517-2-8

    Article  Google Scholar 

  8. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Rev 44(3):231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  9. Arjmandi R, Hassan A, Zakaria Z (2017) Polylactic acid green nanocomposites for automotive applications. Green biocomposites: design and applications. Springer, Cham, pp 193–208. https://doi.org/10.1007/978-3-319-49382-4_9.

    Chapter  Google Scholar 

  10. Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Plastics from Bacteria: natural functions and applications. Springer, Berlin, Heidelberg, pp 323–346. https://doi.org/10.1007/978-3-642-03287-5_13.

    Chapter  Google Scholar 

  11. Stefaniak K, Masek A (2021) Green copolymers based on poly (lactic Acid)—Short review. Materials 14(18):5254. https://doi.org/10.3390/ma14185254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartmann MH (1998) High molecular weight polylactic acid polymers. Biopolymers from renewable resources. Springer, Berlin, Heidelberg, pp 367–411. https://doi.org/10.1007/978-3-662-03680-8_15

    Book  Google Scholar 

  13. Li X, Lin Y, Liu M, Meng L, Li C (2023) A review of research and application of polylactic acid composites. J Appl Polym Sci 140(7):e53477. https://doi.org/10.1002/app.53477

    Article  CAS  Google Scholar 

  14. Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graça L, Gaspar RS, Préat V, Florindo HF (2017) Poly (lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater 48:41–57. https://doi.org/10.1016/j.actbio.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  15. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152. https://doi.org/10.1016/S0141-3910(97)00148-1

    Article  CAS  Google Scholar 

  16. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–Polylactide: a critique. Eur Polym J 43(10):4053–4074. https://doi.org/10.1016/j.eurpolymj.2007.06.045

    Article  CAS  Google Scholar 

  17. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  18. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264. https://doi.org/10.1007/s11458-009-0092-x

    Article  Google Scholar 

  19. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626. https://doi.org/10.1111/jam.14290

    Article  CAS  PubMed  Google Scholar 

  20. Kricheldorf HR, Sumbel M (1989) Polylactones—18. Polymerization of l, l-lactide with sn (II) and sn (IV) halogenides. Eur Polym J 25(6):585–591. https://doi.org/10.1016/0014-3057(89)90010-4

    Article  CAS  Google Scholar 

  21. Gruber P (2004) Chemicals from renewable resources

  22. Vink ET, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to Nature Works™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419. https://doi.org/10.1016/S0141-3910(02)00372-5

    Article  CAS  Google Scholar 

  23. Shih YF, Huang CC, Chen PW (2010) Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks. Mater Sci Eng A 527(6):1516–1521. https://doi.org/10.1016/j.msea.2009.10.024

    Article  CAS  Google Scholar 

  24. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102. https://doi.org/10.1016/0142-9612(96)85754-1

    Article  CAS  PubMed  Google Scholar 

  25. Abd Alsaheb RA, Aladdin A, Othman NZ, Abd Malek R, Leng OM, Aziz R, El Enshasy HA (2015) Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7(12):51–63

    CAS  Google Scholar 

  26. Taib NAAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, Julaihi MRMB, Khan A (2023) A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull 80(2):1179–1213. https://doi.org/10.1007/s00289-022-04160-y

    Article  CAS  Google Scholar 

  27. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

    Article  CAS  Google Scholar 

  28. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48(1):263–277. https://doi.org/10.1016/S1359-6454(99)00299-2

    Article  CAS  Google Scholar 

  29. Casalini T, Rossi F, Castrovinci A, Perale G (2019) A perspective on polylactic acid- based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259. https://doi.org/10.3389/fbioe.2019.00259

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54(9):944–967. https://doi.org/10.1080/03602559.2014.979507

    Article  CAS  Google Scholar 

  31. Yamane H, Sasai K (2003) Effect of the addition of poly (D-lactic acid) on the thermal property of poly (L-lactic acid). Polymer 44(8):2569–2575. https://doi.org/10.1016/S0032-3861(03)00092-2

    Article  CAS  Google Scholar 

  32. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol Adv 30(1):321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  33. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  34. Södergård A, Stolt M (2002) Properties of lactic acid-based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163. https://doi.org/10.1016/S0079-6700(02)00012-6

    Article  Google Scholar 

  35. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442. https://doi.org/10.1016/S0142-9418(01)00107-6

    Article  Google Scholar 

  36. Ranakoti L, Gangil B, Mishra SK, Singh T, Sharma S, Ilyas RA, El-Khatib S (2022) Critical review on polylactic acid: Properties, structure, processing, biocomposites, and nanocomposites. Materials 15(12):4312. https://doi.org/10.3390/ma15124312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81. https://doi.org/10.1177/0892705712439571

    Article  CAS  Google Scholar 

  38. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Package Technol Res 3:77–96. https://doi.org/10.1007/s41783-018-0049-y

    Article  Google Scholar 

  39. Ranakoti L, Gupta MK, Rakesh PK (2019) Analysis of mechanical and tribological behavior of wood flour filled glass fiber reinforced epoxy composite. Mater Res Express 6(8):085327. https://doi.org/10.1088/2053-1591/ab2375

    Article  CAS  Google Scholar 

  40. Ranakoti L, Rakesh PK (2020) Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite. Compos Commun 22:100526. https://doi.org/10.1016/j.coco.2020.100526

    Article  Google Scholar 

  41. Ebrahimi F, Ramezani Dana H (2022) Poly lactic acid (PLA) polymers: from properties to biomedical applications. Int J Polym Mater 71(15):1117–1130. https://doi.org/10.1080/00914037.2021.1944140

    Article  CAS  Google Scholar 

  42. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  43. Tsuji H, Ikada Y (2000) Properties and morphology of poly (L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphate- buffered solution. Polym Degrad Stab 67(1):179–189. https://doi.org/10.1016/S0141-3910(99)00111-1

    Article  CAS  Google Scholar 

  44. Dorgan JR, Janzen J, Clayton MP, Hait SB, Knauss DM (2005) Melt rheology of variable L-content poly (lactic acid). J Rheol 49(3):607–619. https://doi.org/10.1122/1.1896957

    Article  CAS  Google Scholar 

  45. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci C Polym Rev 45(4):325–349. https://doi.org/10.1080/15321790500304148

    Article  CAS  Google Scholar 

  46. Bigg DM (2005) Polylactide copolymers: Effect of copolymer ratio and end capping on their properties. Adv Polym Technol 24(2):69–82. https://doi.org/10.1002/adv.20032

    Article  CAS  Google Scholar 

  47. Hughes J, Thomas R, Byun Y, Whiteside S (2012) Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydr Polym 88(1):165–172. https://doi.org/10.1016/j.carbpol.2011.11.078

    Article  CAS  Google Scholar 

  48. Pyda M, Bopp RC, Wunderlich B (2004) Heat capacity of poly (lactic acid). J Chem Thermodyn 36(9):731–742. https://doi.org/10.1016/j.jct.2004.05.003

    Article  CAS  Google Scholar 

  49. Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly (lactic acid): consequences of blending chain architectures. Polym Eng Sci 41(12):2172–2184. https://doi.org/10.1002/pen.10912

    Article  CAS  Google Scholar 

  50. Hamad K, Ko YG, Kaseem M, Deri F (2014) Effect of acrylonitrile–butadiene–styrene on flow behavior and mechanical properties of polylactic acid/low density polyethylene blend. Asia-Pac. J Chem Eng 9(3):349–353. https://doi.org/10.1002/apj.1802

    Article  CAS  Google Scholar 

  51. Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10(1):47–53. https://doi.org/10.1016/S0926-6690(99)00009-6

    Article  CAS  Google Scholar 

  52. Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly (lactic acid) s. J Polym Environ 8:1–9. https://doi.org/10.1023/A:1010185910301

    Article  Google Scholar 

  53. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9(5):435–455. https://doi.org/10.3144/expresspolymlett.2015.42

    Article  CAS  Google Scholar 

  54. Auras R, Harte B, Selke S (2004) Effect of water on the oxygen barrier properties of poly (ethylene terephthalate) and polylactide films. J Appl Polym Sci 92(3):1790–1803. https://doi.org/10.1002/app.20148

    Article  CAS  Google Scholar 

  55. Auras RA, Singh SP, Singh JJ (2005) Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18(4):207–216. https://doi.org/10.1002/pts.692

    Article  CAS  Google Scholar 

  56. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of montmorillonite layered silicate on plasticized poly (l-lactide) blown films. Polymer 46(25):11716–11727. https://doi.org/10.1016/j.polymer.2005.09.057

    Article  CAS  Google Scholar 

  57. Bao L, Dorgan JR, Knauss D, Hait S, Oliveira NS, Maruccho IM (2006) Gas permeation properties of poly (lactic acid) revisited. J Membr Sci 285(1–2):166–172. https://doi.org/10.1016/j.memsci.2006.08.021

    Article  CAS  Google Scholar 

  58. Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polym Degrad Stab 137:122–130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009

    Article  CAS  Google Scholar 

  59. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138. https://doi.org/10.1007/3-540-45734-8_4

    Article  CAS  Google Scholar 

  60. Saha SK, Tsuji H (2006) Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly (l-lactic acid) s. Polym Degrad Stab 91(8):1665–1673. https://doi.org/10.1016/j.polymdegradstab.2005.12.009

    Article  CAS  Google Scholar 

  61. Ho KLG, Pometto AL, Hinz PN (1999) Effects of temperature and relative humidity on polylactic acid plastic degradation. J Environ Polym Degrad 7:83–92. https://doi.org/10.1023/A:1021808317416

    Article  CAS  Google Scholar 

  62. Sangwan P, Wu DY (2008) New insights into polylactide biodegradation from molecular ecological techniques. Macromol Biosci 8(4):304–315. https://doi.org/10.1002/mabi.200700317

    Article  CAS  PubMed  Google Scholar 

  63. Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. Natural fibers. Biopolymers Biocomposites 16:527–577

    Google Scholar 

  64. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly (lactide). Appl Microbiol Biotechnol 72:244–251. https://doi.org/10.1007/s00253-006-0488-1

    Article  CAS  PubMed  Google Scholar 

  65. Itävaara M, Karjomaa S, Selin JF (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885. https://doi.org/10.1016/S0045-6535(01)00163-1

    Article  PubMed  Google Scholar 

  66. Tsuji H, Suzuyoshi K (2002) Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polym Degrad Stab 75(2):347–355. https://doi.org/10.1016/S0141-3910(01)00240-3

    Article  CAS  Google Scholar 

  67. Tsuji H, Suzuyoshi K (2002) Environmental degradation of biodegradable polyesters 2. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in natural dynamic seawater. Polym Degrad Stab 75(2):357–365. https://doi.org/10.1016/S0141-3910(01)00239-7

    Article  CAS  Google Scholar 

  68. Le Duigou A, Davies, P E T E R, Baley C (2009) Seawater ageing of flax/poly (lactic acid) biocomposites. Polym Degrad Stab 94(7):1151–1162. https://doi.org/10.1016/j.polymdegradstab.2009.03.025

    Article  CAS  Google Scholar 

  69. Richert A, Dąbrowska GB (2021) Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. Int J Biol Macromol 176:226–232. https://doi.org/10.1016/j.ijbiomac.2021.01.202

    Article  CAS  PubMed  Google Scholar 

  70. Kühnert I, Spörer Y, Brünig H, Tran NHA, Rudolph N (2018) Processing of poly (lactic acid). Adv Polym Sci 1–33. https://doi.org/10.1007/12_2017_30

  71. Kazmer D (2017) Design of plastic parts. Applied Plastics Engineering Handbook, 2nd edn. William Andrew Publishing, pp 593–615. https://doi.org/10.1016/B978-0-323-39040-8.00028-6.

  72. Corre YM, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50:613–629. https://doi.org/10.1007/s00397-011-0538-1

    Article  CAS  Google Scholar 

  73. Ljungberg N, Andersson T, Wesslén B (2003) Film extrusion and film weldability of poly (lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88(14):3239–3247. https://doi.org/10.1002/app.12106

    Article  CAS  Google Scholar 

  74. Zhou ZF, Huang GQ, Xu WB, Ren FM (2007) Chain extension and branching of poly (L-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym Lett 1(11):734. https://doi.org/10.3144/expresspolymlett.2007.101

    Article  CAS  Google Scholar 

  75. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823. https://doi.org/10.1016/j.polymer.2004.10.047

    Article  CAS  Google Scholar 

  76. Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly (lactic acid). J Appl Polym Sci 86(5):1227–1234. https://doi.org/10.1002/app.11077

    Article  CAS  Google Scholar 

  77. Kulinski B, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly (L-lactide). Polymer 46(23):10290–10300. https://doi.org/10.1016/j.polymer.2005.07.101

    Article  CAS  Google Scholar 

  78. Martin O, Avérous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6

    Article  CAS  Google Scholar 

  79. Hagen R (2013) The potential of PLA for the fiber market. Bioplastic Magazine 8:12–15

    Google Scholar 

  80. Schmack G, Tändler B, Optiz G, Vogel R, Komber H, Häußler L, Voigt D, Weinmann S, Heinemann M, Fritz HG (2004) High-speed melt spinning of various grades of polylactides. J Appl Polym Sci 91(2):800–806. https://doi.org/10.1002/app.13170

    Article  CAS  Google Scholar 

  81. Perepelkin KE (2002) Polylactide fibres: fabrication, properties, use, prospects. A review. Fibre Chem 34(2):85–100. https://doi.org/10.1023/A:1016359925976

    Article  CAS  Google Scholar 

  82. Beyreuther R, Brünig H (2006) Dynamics of fibre formation and processing: modeling and application in fibre and textile industry. Springer Science and Business Media

  83. Hahn J, Breier A, Brünig H, Heinrich G (2016) Mechanical adapted embroidered scaffolds based on polylactic acid melt spun multifilaments for ligament tissue engineering. Annual report of Leibniz-Institut für Polymerforschung Dresden e. V., Dresden, chapter: Biologyinspired interface and material design, pp 42–44

  84. An Tran NH, Brünig H, Hinüber C, Heinrich G (2014) Melt spinning of biodegradable nanofibrillary structures from poly (lactic acid) and poly (vinyl alcohol) blends. Macromol Mater Eng 299(2):219–227. https://doi.org/10.1002/mame.201300125

    Article  CAS  Google Scholar 

  85. Endres HJ, Siebert-Raths A (2011) Manufacture and chemical structure of biopolymers. Engineering Biopolymers: Markets, Manufacturing, Properties ans Applications, pp 71–148

  86. Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly (l-lactic acid). Polym Eng Sci 47(7):1141–1147. https://doi.org/10.1002/pen.20799

    Article  CAS  Google Scholar 

  87. Ghosh S, Viana JC, Reis RL, Mano JF (2008) Oriented morphology and enhanced mechanical properties of poly (l-lactic acid) from shear controlled orientation in injection molding. Mater Sci Eng A 490(1–2):81–89. https://doi.org/10.1016/j.msea.2008.01.003

    Article  CAS  Google Scholar 

  88. Kuehnert I (2009) Cold and hot interfaces during injection molding. In: PPS-25 Polymer Processing Society, Goa, Indien

  89. Kuehnert I, Pompsch I (2011) Morphology and strength of injection molded parts with interfaces. In: Proceedings of SPE Antec

  90. Kuehnert I, Schoenfeldt A, Auf der Landwehr M (2013) New insights into interfaces in injection molded parts. In: Proceedings of SPE Antec, Society of Plastics Engineers, Cincinnati

  91. Kuehnert I, Spoerer Y, Zimmermann M (2016) Weld lines in injection molded parts: strength, morphology and improvement. In: Proceedings of SPE Antec

  92. Ren J (ed) (2011) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Springer Science and Business Media

  93. Fachagentur Nachwachsender Rohstoffe (FNR) (2016) Processing of bioplastics – a guideline. Report

  94. Kamal MR, Isayev AI (eds) (2012) Injection molding: technology and fundamentals. Carl Hanser Verlag GmbH Co KG

  95. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6(1):1–11. https://doi.org/10.5923/j.ajps.20160601.01

    Article  CAS  Google Scholar 

  96. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  97. Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, Braca F, Martínez BM, Alonso R, Agostinis L, Verstichel S, Six L, Mets SD, Gómez EC, Ißbrücker C, Geerinck R, Nettleton DF, Campos I, Sauter E, Pieczyk P, Schmid M (2020) Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers 12(7):1558. https://doi.org/10.3390/polym12071558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  CAS  PubMed  Google Scholar 

  99. Aguirre-Joya JA, De Leon-Zapata MA, Alvarez-Perez OB, Torres-León C, Nieto-Oropeza DE, Ventura-Sobrevilla JM, Aguilar MA, Ruelas-Chacón X, Rojas R, Ramos-Aguiñaga ME, Aguilar CN (2018) Basic and applied concepts of edible packaging for foods. In: Food Packaging and Preservation, Academic Press, pp 1–61. https://doi.org/10.1016/B978-0-12-811516-9.00001-4

  100. Saklani P, Siddhnath DS, Singh SM (2019) A review of edible packaging for foods. Int J Curr Microbiol Appl Sci 8(07):2885–2895

    Article  CAS  Google Scholar 

  101. Jeevahan J, Anderson A, Sriram V, Durairaj RB, Britto Joseph G, Mageshwaran G (2021) Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. Int J Ambient Energy 42(9):1083–1101. https://doi.org/10.1080/01430750.2018.1537939

    Article  Google Scholar 

  102. Jeevahan J, Chandrasekaran M (2019) Nanoedible films for food packaging: a review. J Mater Sci 54(19):12290–12318. https://doi.org/10.1007/s10853-019-03742-y

    Article  CAS  Google Scholar 

  103. Ahmadi P, Jahanban-Esfahlan A, Ahmadi A, Tabibiazar M, Mohammadifar M (2022) Development of ethyl cellulose-based formulations: a perspective on the novel technical methods. Food Rev Int 38(4):685–732. https://doi.org/10.1080/87559129.2020.1741007

    Article  CAS  Google Scholar 

  104. Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: a review. Materials 11(10):1834. https://doi.org/10.3390/ma11101834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiao L, Wang B, Yang G, Gauthier M (2012) Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomedical Sci Eng Technol 11:247–282

    Google Scholar 

  106. Bátori V, Åkesson D, Zamani A, Taherzadeh MJ, Horváth IS (2018) Anaerobic degradation of bioplastics: a review. Waste Manage 80:406–413. https://doi.org/10.1016/j.wasman.2018.09.040

    Article  CAS  Google Scholar 

  107. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC

  108. Ahmad A, Banat F, Alsafar H, Hasan SW (2022) An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Convers Biorefin 1–20. https://doi.org/10.1007/s13399-022-02581-3

  109. Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1(1):1117749. https://doi.org/10.1080/23311932.2015.1117749

    Article  CAS  Google Scholar 

  110. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486. https://doi.org/10.1023/B:ABME.0000017544.36001.8e

    Article  PubMed  Google Scholar 

  111. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005

    Article  CAS  Google Scholar 

  112. Ilyas RA, Zuhri MYM, Aisyah HA, Asyraf MRM, Hassan SA, Zainudin ES, Sapuan SM, Sharma S, Bangar SP, Jumaidin R, Nawab Y, Faudzi AAM, Abral H, Asrofi M, Syafri E, Sari NH (2022) Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 14(1):202. https://doi.org/10.3390/polym14010202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leroux JC, Allémann E, De Jaeghere F, Doelker E, Gurny R (1996) Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. J Control Release 39(2–3):339–350. https://doi.org/10.1016/0168-3659(95)00164-6

    Article  CAS  Google Scholar 

  114. Fishbein I, Chorny M, Rabinovich L, Banai S, Gati I, Golomb G (2000) Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. J Control Release 65(1–2):221–229. https://doi.org/10.1016/S0168-3659(99)00244-8

    Article  CAS  PubMed  Google Scholar 

  115. Matsumoto J, Nakada Y, Sakurai K, Nakamura T, Takahashi Y (1999) Preparation of nanoparticles consisted of poly (L-lactide)–poly (ethylene glycol)–poly (L-lactide) and their evaluation in vitro. Int J Pharm 185(1):93–101. https://doi.org/10.1016/S0378-5173(99)00153-2

    Article  CAS  PubMed  Google Scholar 

  116. Xing J, Zhang D, Tan T (2007) Studies on the oridonin-loaded poly (D, L-lactic acid) nanoparticles in vitro and in vivo. Int J Biol Macromol 40(2):153–158. https://doi.org/10.1016/j.ijbiomac.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  117. Rancan F, Papakostas D, Hadam S, Hackbarth S, Delair T, Primard C, Verrier B, Sterry W, Blume-Peytavi U, Vogt A (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26:2027–2036. https://doi.org/10.1007/s11095-009-9919-x

    Article  CAS  PubMed  Google Scholar 

  118. Gao H, Wang YN, Fan YG, Ma JB (2005) Synthesis of a biodegradable tadpole- shaped polymer via the coupling reaction of polylactide onto mono (6-(2- aminoethyl) amino-6-deoxy)-β-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Release 107(1):158–173. https://doi.org/10.1016/j.jconrel.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  119. Dong Y, Feng SS (2006) Nanoparticles of poly (D, L-lactide)/methoxy poly (ethylene glycol)-poly (D, L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res A 78(1):12–19. https://doi.org/10.1002/jbm.a.30684

    Article  CAS  PubMed  Google Scholar 

  120. Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly (lactide)–vitamin E TPGS nanoparticles. Biomaterials 29(17):2663–2672. https://doi.org/10.1016/j.biomaterials.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  121. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, Casciato S, Brannon-Peppas L (2009) PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A 91(1):263–276. https://doi.org/10.1002/jbm.a.32247

    Article  CAS  PubMed  Google Scholar 

  122. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603. https://doi.org/10.1126/science.8128245

    Article  CAS  PubMed  Google Scholar 

  123. Italia JL, Bhardwaj V, Kumar MR (2006) Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov Today 11(17–18):846–854. https://doi.org/10.1016/j.drudis.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  124. Zhao J, Mi Y, Liu Y, Feng SS (2012) Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 33(6):1948–1958. https://doi.org/10.1016/j.biomaterials.2011.11.051

    Article  CAS  PubMed  Google Scholar 

  125. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247. https://doi.org/10.1038/nrd4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010. https://doi.org/10.1039/C2CS15344K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  128. Yu Y, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C (2014) Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules 15(2):524–532. https://doi.org/10.1021/bm401471p

    Article  CAS  PubMed  Google Scholar 

  129. Haers PE, Suuronen R, Lindqvist C, Sailer H (1998) Biodegradable polylactide plates and screws in orthognathic surgery. J Cranio-maxillofacial Surg 26(2):87–91. https://doi.org/10.1016/S1010-5182(98)80045-0

    Article  CAS  Google Scholar 

  130. Van Sliedregt A, Radder AM, De Groot K, Van Blitterswijk CA (1992) In vitro biocompatibility testing of polylactides part I proliferation of different cell types. J Mater Sci: Mater Med 3:365–370. https://doi.org/10.1007/BF00705369

    Article  Google Scholar 

  131. Dürselen L, Dauner M, Hierlemann H, Planck H, Claes LE, Ignatius A (2001) Resorbable polymer fibers for ligament augmentation. J Biomed Mater Res 58(6):666–672. https://doi.org/10.1002/jbm.1067

    Article  PubMed  Google Scholar 

  132. Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J (2018) Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev 54(3):127–138. https://doi.org/10.1016/j.jdsr.2018.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  133. Eppley BL, Morales L, Wood R, Pensler J, Goldstein J, Havlik RJ, Habal M, Losken A, Williams JK, Burstein F, Rozzelle AA, Sadove AM (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114(4):850–856. https://doi.org/10.1097/01.PRS.0000132856.69391.43

    Article  PubMed  Google Scholar 

  134. Imola MJ, Schramm VL (2002) Resorbable internal fixation in pediatric cranial base surgery. Laryngoscope 112(10):1897–1901. https://doi.org/10.1097/00005537-200210000-00038

    Article  PubMed  Google Scholar 

  135. Güleçyüz MF, Mazur A, Schröder C, Braun C, Ficklscherer A, Roßbach BP, Müller PE, Pietschmann MF (2015) Influence of temperature on the biomechanical stability of titanium, PEEK, poly-l-lactic acid, and β–tricalcium phosphate poly-l-lactic acid suture anchors tested on human humeri in vitro in a wet environment. Arthrosc: J Arthrosc Relat Surg 31(6):1134–1141. https://doi.org/10.1016/j.arthro.2014.12.021

    Article  Google Scholar 

  136. Huh BK, Kim BH, Kim SN, Park CG, Lee SH, Kim KR, Heo CY, Choy YB (2017) Surgical suture braided with a diclofenac-loaded strand of poly (lactic-co- glycolic acid) for local, sustained pain mitigation. Mater Sci Eng C 79:209–215. https://doi.org/10.1016/j.msec.2017.05.024

    Article  CAS  Google Scholar 

  137. Schrumpf MA, Lee AT, Weiland AJ (2011) Foreign-body reaction and osteolysis induced by an intraosseous poly-l-lactic acid suture anchor in the wrist: case report. J Hand Surg 36(11):1769–1773. https://doi.org/10.1016/j.jhsa.2011.08.012

    Article  Google Scholar 

  138. Liu S, Wu G, Chen X, Zhang X, Yu J, Liu M, Zhang Y, Wang P (2019) Degradation behavior in vitro of carbon nanotubes (CNTs)/poly (lactic acid) (PLA) composite suture. Polymers 11(6):1015. https://doi.org/10.3390/polym11061015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Benicewicz BC, Hopper PK (1990) Polymers for absorbable surgical sutures—part I. J Bioact Compat Polym 5(4):453–472. https://doi.org/10.1177/088391159000500407

    Article  CAS  Google Scholar 

  140. Hasanpur E, Ghazavizadeh A, Sadeghi A, Haboussi M (2021) In vitro corrosion study of PLA/Mg composites for cardiovascular stent applications. J Mech Behav Biomed Mater 124:104768. https://doi.org/10.1016/j.jmbbm.2021.104768

    Article  CAS  PubMed  Google Scholar 

  141. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  142. Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN (2021) Poly (lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13(11):1822. https://doi.org/10.3390/polym13111822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kabirian F, Ditkowski B, Zamanian A, Heying R, Mozafari M (2018) An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Mater Today: Proc 5(7):15586–15594. https://doi.org/10.1016/j.matpr.2018.04.167

    Article  CAS  Google Scholar 

  144. Adesina OT, Jamiru T, Sadiku ER, Ogunbiyi OF, Adegbola TA (2019) Water absorption and thermal degradation behavior of graphene reinforced poly(lactic) acid nanocomposite. IOP Conf Ser: Mater Sci Eng 627:012015. https://doi.org/10.1088/1757-899X/627/1/012015

    Article  CAS  Google Scholar 

  145. Bouzouita A, Notta-Cuvier D, Raquez JM, Lauro F, Dubois P (2018) Poly (lactic acid)-based materials for automotive applications. Adv Polym Sci 177–219. https://doi.org/10.1007/12_2017_10

  146. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide- co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56. https://doi.org/10.1016/j.jconrel.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  147. Cicero JA, Dorgan JR (2001) Physical properties and fiber morphology of poly (lactic acid) obtained from continuous two-step melt spinning. J Polym Environ 9:1–10. https://doi.org/10.1023/A:1016012818800

    Article  CAS  Google Scholar 

  148. Agrawal AK, Bhalla R (2003) Advances in the production of poly (lactic acid) fibers. A review. J Macromol Sci C: Polym Rev 43(4):479–503. https://doi.org/10.1081/MC-120025975

    Article  CAS  Google Scholar 

  149. Penning JP, Dijkstra H, Pennings AJ (1993) Preparation and properties of absorbable fibres from L-lactide copolymers. Polymer 34(5):942–951. https://doi.org/10.1016/0032-3861(93)90212-S

    Article  CAS  Google Scholar 

  150. Farrington DW, Lunt J, Davies S, Blackburn RS (2005) Poly (lactic acid) fibers. Biodegradable Sustainable Fibres 6:191–220

    Article  Google Scholar 

  151. Auras R, Lim LT, Selke S, Tsuji H (2010) Poly (lactic acid): synthesis, structures, properties, Processing, and applications. John Wiley and Sons, Inc., New Jersey, pp 469–476

    Book  Google Scholar 

Download references

Acknowledgements

No financial support is taken from any funding agencies for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mondal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, N., Mondal, A. Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview. Polym. Bull. 81, 11421–11457 (2024). https://doi.org/10.1007/s00289-024-05252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-024-05252-7

Keywords

Navigation