Skip to main content
Log in

Evaluation of physical, mechanical and thermal properties of epoxy composites filled with bio-fiber derived from Bambara nut shell filler

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Composites are fabricating by reinforcing waste bambara nut shell powder (BNSP) as a bio-filler into an epoxy resin matrix. The composite is fabricated by varying the mass fractions of filler in the range of 5–35 wt%. The effects of bio-filler content on physical, mechanical, and thermal properties are evaluated. The studies reveal that the tensile strength, tensile modulus, flexural strength, and impact strength increased with increasing bio-filler content. The highest mechanical properties of BNSP-loaded epoxy composites are achieved at bio-filler mass content of 15 wt%, whereas hardness increased for 5–35 wt% with peak value at 35 wt%. The water absorption and thickness swelling of the BNSF/epoxy composites increased with increasing bio-filler contents, while the density decreased with an increase in bio-filler content. The TGA results revealed that an increasing bio-filler content decreased thermal stability, whereas the Tg and Tm of the composites increased with increasing bio-filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Jha A, Kumar A (2019) Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst Eng 42(12):1893–1901. https://doi.org/10.1007/s00449-019-02199-2

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut 276:116731. https://doi.org/10.1016/j.envpol.2021.116731

    Article  CAS  PubMed  Google Scholar 

  3. Andrew JJ, Dhakal HN (2022) Sustainable biobased composites for advanced applications: recent trends and future opportunities—a critical review. Compos Part C 7:100220. https://doi.org/10.1016/j.jcomc.2021.100220

    Article  Google Scholar 

  4. Anwajler B, Zdybel E, Tomaszewska-Ciosk E (2023) Innovative polymer composites with natural fillers produced by additive manufacturing (3D printing)—a literature review. Polymers (Basel) 15(17):1–19. https://doi.org/10.3390/polym15173534

    Article  CAS  Google Scholar 

  5. Kaur M, Mehta A, Bhardwaj KK, Gupta R (2020) Bionanomaterials from agricultural wastes. Adv Struct Mater 126:243–260. https://doi.org/10.1007/978-981-15-3560-4_10

    Article  Google Scholar 

  6. Phiri R, Mavinkere Rangappa S, Siengchin S, Oladijo OP, Dhakal HN (2023) Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: a review. Adv Ind Eng Polym Res 6(4):436–450. https://doi.org/10.1016/j.aiepr.2023.04.004

    Article  CAS  Google Scholar 

  7. Schirp A, Ibach RE, Pendleton DE, Wolcott MP (2008) Biological degradation of Wood-Plastic Composites (WPC) and strategies for improving the resistance of WPC against biological decay. ACS Symp Ser 982:480–507. https://doi.org/10.1021/bk-2008-0982.ch029

    Article  CAS  Google Scholar 

  8. Wang YC, Wong PMH, Kodur V (2007) An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures. Compos Struct 80(1):131–140. https://doi.org/10.1016/j.compstruct.2006.04.069

    Article  Google Scholar 

  9. Ashori A, Bahreini Z (2009) Evaluation of calotropis gigantea as a promising raw material for fiber-reinforced composite. J Compos Mater 43(11):1297–1304. https://doi.org/10.1177/0021998308104526

    Article  CAS  Google Scholar 

  10. Mohite AS, Jagtap AR, Avhad MS, More AP (2022) Recycling of major agriculture crop residues and its application in polymer industry: a review in the context of waste to energy nexus. Energy Nexus 7:100134. https://doi.org/10.1016/j.nexus.2022.100134

    Article  CAS  Google Scholar 

  11. Oladele IO, Omotosho TF, Adediran AA (2020) Polymer-based composites: an indispensable material for present and future applications. Int J Polym Sci 2020:1–12. https://doi.org/10.1155/2020/8834518

    Article  CAS  Google Scholar 

  12. Hassan BB, Awopetu OO (2019) Production and characterization of particle boards from common agro wastes in Nigeria. Int J Innov Sci Res Technol 4(1):637–642

    Google Scholar 

  13. Oluwole FA, Abdulrahim AT, Oumarou MB (2007) Development and performance evaluation of impact bambara groundnut sheller. Int Agrophys 21(3):269–274

    Google Scholar 

  14. Alamri H, Low IM (2012) Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polym Test 31(5):620–628. https://doi.org/10.1016/j.polymertesting.2012.04.002

    Article  CAS  Google Scholar 

  15. Prasad L, Singh G, Yadav A, Kumar V, Kumar A (2019) Properties of functionally gradient composites reinforced with waste natural fillers. Acta Period Technol 50:250–259. https://doi.org/10.2298/APT1950250P

    Article  CAS  Google Scholar 

  16. Eze WU, Kuzmin A, Ugbaja MI, Bayero AH (2022) Effect of nano-structured Bambara nut shell (Vigna subterranea (L.) Verdc) as effect of nano-structured Bambara nut shell (Vigna subterranea (L.) Verdc) as filler on the physical, mechanical and morphological properties of epoxy matrix. J Mater Environ Sci 13(10):1155–1170

    CAS  Google Scholar 

  17. Gital DY, Raji A (2022) Development of polymer—Bambaranut shell composite for structural board application. Eur J Mater Sci Eng 7(1):15–27. https://doi.org/10.36868/ejmse.2022.07.01.015

    Article  CAS  Google Scholar 

  18. Imoisili PE, Jen TC (2022) Mechanical and acoustic performance of plantain (Musa paradisiacal) fibre reinforced epoxy bio-composite. J Nat Fibers 19(15):11658–11665. https://doi.org/10.1080/15440478.2022.2036289

    Article  CAS  Google Scholar 

  19. Chukwutoo C, Emeka C, Onwusoronye U, Nnaemeka S (2023) Advanced industrial and engineering polymer research modelling creep responses of plantain fibre reinforced HDPE (PFRHDPE) for elevated temperature applications. Adv Ind Eng Polym Res 6(1):49–61. https://doi.org/10.1016/j.aiepr.2022.06.001

    Article  CAS  Google Scholar 

  20. Imoisili PE, Jen TC (2020) Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa paradisiaca) fibre/epoxy bio-composites. Integr Med Res 9(4):8705–8713. https://doi.org/10.1016/j.jmrt.2020.05.121

    Article  CAS  Google Scholar 

  21. Imoisili PE, Jen TC (2020) Performance characteristics of unsaturated polyester reinforced with high frequency microwave treated natural fibre performance characteristics of unsaturated polyester reinforced with high frequency microwave treated natural. Int Conf Eng Sustain World 1107(012029):1–8. https://doi.org/10.1088/1757-899X/1107/1/012029

    Article  Google Scholar 

  22. Imoisili PE, Jen TC (2021) Modelling and optimization of the impact strength of plantain (Musa paradisiacal) fibre/MWCNT hybrid nanocomposite using response surface methodology. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2021.05.101

    Article  Google Scholar 

  23. Jawaid M, Siengchin S (2019) Hybrid composites: a versatile materials for future. Appl Sci Eng Prog 12(4):223. https://doi.org/10.14416/j.asep.2019.09.002

    Article  Google Scholar 

  24. Rangappa SM, Siengchin S, Dhakal HN (2020) Green-composites: ecofriendly and sustainability. Appl Sci Eng Prog 13(3):183–184. https://doi.org/10.14416/j.asep.2020.06.001

    Article  Google Scholar 

  25. Siengchin S (2023) A review on lightweight materials for defence applications: present and future developments. Def Technol 24:1–17. https://doi.org/10.1016/j.dt.2023.02.025

    Article  Google Scholar 

  26. Waluyo J et al (2023) Characterization of biochar briquettes from coconut shell with the effect of binder: molasses, cow manure and horse manure. Evergreen 10(1):539–545. https://doi.org/10.5109/6782158

    Article  Google Scholar 

  27. Nath S, Jena H, Priyanka SD (2019) Analysis of mechanical properties of jute epoxy composite with cenosphere filler. SILICON 11(2):659–671. https://doi.org/10.1007/s12633-018-9941-x

    Article  CAS  Google Scholar 

  28. Nukala SG, Kong I, Patel VI, Kakarla AB, Kong W, Buddrick O (2022) Development of biodegradable composites using polycaprolactone and bamboo powder. Polymers (Basel) 14(19):1–17. https://doi.org/10.3390/polym14194169

    Article  CAS  Google Scholar 

  29. Chandrika VS et al (2022) Natural fiber incorporated polymer matrix composites for electronic circuit board applications. Adv Mater Sci Eng 2022:1–9. https://doi.org/10.1155/2022/3035169

    Article  CAS  Google Scholar 

  30. de Oliveira N, Júnior J, Perissé Duarte Lopes F, Tonini Simonassi N, Souza D, Neves Monteiro S, Fontes Vieira CM (2023) Evaluation of the physical properties of composite panels with eucalyptus sawdust waste and castor oil-based polyurethane. J Mater Res Technol 23:1084–1093. https://doi.org/10.1016/j.jmrt.2023.01.067

    Article  CAS  Google Scholar 

  31. de Oliveira Júnior JN, Lopes FPD, Simonassi NT, Oliveira MP, Gonçalves FG, Vieira CMF (2023) Evaluation of hot pressing processing by physical properties of ecofriendly composites reinforced by eucalyptus sawdust and chamotte residues. Polymers (Basel) 15(8):1–12. https://doi.org/10.3390/polym15081931

    Article  CAS  Google Scholar 

  32. Kuram E (2022) Advances in development of green composites based on natural fibers: a review. Emerg Mater 5(3):811–831. https://doi.org/10.1007/s42247-021-00279-2

    Article  CAS  Google Scholar 

  33. Mpotokwane SM, Gaditlhatlhelwe E, Sebaka A, Jideani VA (2008) Physical properties of bambara groundnuts from Botswana. J Food Eng 89(1):93–98. https://doi.org/10.1016/j.jfoodeng.2008.04.006

    Article  Google Scholar 

  34. Alaneme GU, Mbadike EM (2021) Experimental investigation of Bambara nut shell ash in the production of concrete and mortar. Innov Infrastruct Solut 6(2):1–14. https://doi.org/10.1007/s41062-020-00445-1

    Article  Google Scholar 

  35. Okonkwo EG et al (2020) Mechanical and thermomechanical properties of clay-Bambara nut shell polyester bio-composite. Int J Adv Manuf Technol 108(7–8):2483–2496. https://doi.org/10.1007/s00170-020-05570-w

    Article  Google Scholar 

  36. Loganathan L, Saravanakumar SS (2021) Physico—chemical and tensile properties of green bio-films from poly(vinyl alcohol)/nano ground nutshell filler. J Nat Fibers 00(00):1–12. https://doi.org/10.1080/15440478.2020.1863289

    Article  CAS  Google Scholar 

  37. Huang L et al (2015) Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J Mater Sci Mater Electron 26(6):3564–3572. https://doi.org/10.1007/s10854-015-2870-1

    Article  CAS  Google Scholar 

  38. Zhang H et al (2019) Optimization of boron nitride sphere loading in epoxy: Enhanced thermal conductivity and excellent electrical insulation. Polymers (Basel) 11(8):1–14. https://doi.org/10.3390/polym11081335

    Article  CAS  Google Scholar 

  39. Azeez TO, Olaitan SA, Atuanya CU, Onukwuli DO, Akagu CC, Menkiti MC (2013) Effect of filler weight fraction on the mechanical properties of Bambara groundnut (Okpa) husk polyethylene composite. Int J Curr Res 5(7):1714–1717

    Google Scholar 

  40. Kuranchie C, Yaya A, Bensah YD (2021) The effect of natural fibre reinforcement on polyurethane composite foams—a review. Sci Afr 11:e00722. https://doi.org/10.1016/j.sciaf.2021.e00722

    Article  CAS  Google Scholar 

  41. Nanda T, Singh K, Shelly D, Mehta R (2021) Advancements in multi-scale filler reinforced epoxy nanocomposites for improved impact strength: a review. Crit Rev Solid State Mater Sci 46(4):281–329. https://doi.org/10.1080/10408436.2020.1777934

    Article  ADS  CAS  Google Scholar 

  42. Alshammari BA, Wilkinson AN, Alotaibi BM, Alotibi MF (2022) Influence of carbon micro-and nano-fillers on the viscoelastic properties of polyethylene terephthalate. Polymers (Basel) 14(12):1–17. https://doi.org/10.3390/polym14122440

    Article  CAS  Google Scholar 

  43. Masłowski M, Miedzianowska J, Strzelec K (2018) Influence of wheat, rye, and triticale straw on the properties of natural rubber composites. Adv Polym Technol 37(8):2866–2878. https://doi.org/10.1002/adv.21958

    Article  CAS  Google Scholar 

  44. Nair MM, Shetty N, Alva PP, Shetty SD (2021) Effect of sawdust impregnation on long coir fibers reinforced with epoxy matrix. Int J Adv Appl Sci. https://doi.org/10.21833/ijaas.2018.03.010

    Article  Google Scholar 

  45. Panneer R (2017) Effect of composition of fibers on properties of hybrid composites. Int J Manuf Mater Mech Eng 7(4):28–43. https://doi.org/10.4018/IJMMME.2017100103

    Article  Google Scholar 

  46. Sałasińska K et al (2022) The effect of manufacture process on mechanical properties and burning behavior of epoxy-based hybrid composites. Materials (Basel) 15(1):1–15. https://doi.org/10.3390/ma15010301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our respective universities for creating the enabling environment for this work.

Author information

Authors and Affiliations

Authors

Contributions

AOO, JUI involved in conceptualization; FNA, COI involved in experimental design; MAA, PUN involved in carrying out measurements and manuscript composition; MOC involved in writing; FNA, AOO involved in editing and supervision. All the authors have read and agreed to the final published version of this manuscript.

Corresponding author

Correspondence to Friday Nwankwo Archibong.

Ethics declarations

Conflict of interest

The authors declare that there is no known competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogah, A.O., Archibong, F.N., Allen, M.A. et al. Evaluation of physical, mechanical and thermal properties of epoxy composites filled with bio-fiber derived from Bambara nut shell filler. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05227-8

Keywords

Navigation