Skip to main content
Log in

The impact of injection molding process parameters on mechanical properties and microstructure of PC/ABS blends using Taguchi approach

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PC/ABS blends are commonly used for the production of automotive components due to their thermal and mechanical properties. However, changes in process conditions can have a significant impact on their properties and microstructure. Therefore, determining the optimal parameters for the injection molding (IM) process is critical for effective control of the mechanical properties and quality of the injected parts. In this study, the Taguchi method is applied to investigate the relationship between the tensile stress (σ), Young’s modulus (E) and IM process of PC/ABS blends. The effects of different molding parameters such as material temperature, injection pressure, holding time and mold temperature were investigated. The optimal injection parameters to achieve higher tensile stress (σ) and Young’s modulus (E) were predicted by studying the signal-to-noise ratio (S/N). Thus, the objectives of the Taguchi approach for the IM process are to determine the optimal combination of process parameters and to reduce the quality variations between only a few trials. Two optimal parameter combinations were found yielding very significant mechanical properties (σ, E) of the injected parts. These optimum combinations consist of material temperature of 260 °C, injection pressure ranging between 40 and 50 bar, holding time of 8 s and mold temperature of 60 °C. Experimental results prove that injection pressure and material temperature have the most significant impact on the mechanical properties and the microstructure of PC/ABS blends. These findings may have interesting applications in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PC/ABS:

Polycarbonate/acrylonitrile-butadiene-styrene

σ :

Tensile stress

S/N :

Signal to Noise

DSC:

Differential Scanning Calorimetry

ATR:

Attenuated Total Reflection

IM:

Injection molding

E :

Young’s modulus

DOE:

Design of Experiment

FTIR:

Fourier Transform Infrared

SEM:

Scanning Electron Microscope

References

  1. Zhang J, Hua Y, Liu J, Zhu T, Sun J, Gu X, Zhang S (2023) Constructing flame retardant silica nanoparticles through styrene maleic anhydride copolymer grafting for PC/ABS composites. Compos Part A Appl Sci Manuf 175:107825. https://doi.org/10.1016/j.compositesa.2023.107825

    Article  CAS  Google Scholar 

  2. Açık G (2020) Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(epsilon-caprolactone) s. EXPRESS Polym Lett 3:14. https://doi.org/10.3144/expresspolymlett.2020.23

    Article  CAS  Google Scholar 

  3. Fang QZ, Wang TJ, Beom HG, Zhao HP (2009) Rate-dependent large deformation behavior of PC/ABS. Polym 50:296–304. https://doi.org/10.1016/j.polymer.2008.10.042

    Article  CAS  Google Scholar 

  4. Pham HT, Weckle CL, Ceraso JM (2000) Rheology enhancement in PC/ABS blends. Adv Mater 12:1881–1885. https://doi.org/10.1002/1521-4095(200012)12:23%3c1881:AID-ADMA1881%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  5. Krache R, Debbah I (2011) Some mechanical and thermal properties of PC/ABS blends. Mat Sc App 2:404–410. https://doi.org/10.4236/msa.2011.25052

    Article  CAS  Google Scholar 

  6. Andrzejewski J, Mohanty AK, Misra M (2020) Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials. Comp B Eng 200: 108319. https://doi.org/10.1016/j.compositesb.2020.108319.

  7. Bärwinkel S, Seidel A, Hobeika S, Hufen R, Mörl M, Altstädt V (2016) Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Mater 9:659. https://doi.org/10.3390/ma9080659

    Article  CAS  Google Scholar 

  8. Khosravani MR, Nasiri S (2020) Injection molding manufacturing process: Review of case-based reasoning applications. J Intell Manuf 31:847–864. https://doi.org/10.1007/s10845-019-01481-0

    Article  Google Scholar 

  9. Zhao P, Dong Z, Zhang J, Zhang Y, Cao M, Zhu Z, Fu J (2020) Optimization of injection-molding process parameters for weight control: converting optimization problem to classification problem. Adv Polym Technol 2020:1–9. https://doi.org/10.1155/2020/1309209

    Article  CAS  Google Scholar 

  10. Wang G, Wang Y, Yang D (2021) Study on automotive back door panel injection molding process simulation and process parameter optimization. Adv Mater Sci Eng 2021:1–15. https://doi.org/10.1155/2021/9996423

    Article  ADS  Google Scholar 

  11. Gaspar-Cunha A, Covas JA, Sikora J (2022) Optimization of polymer processing: A review (part II-molding technologies). Mater 15:1138. https://doi.org/10.3390/ma15031138

    Article  CAS  Google Scholar 

  12. Chen JY, Hung PH, Huang MS (2021) Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding. Int J Heat Mass transf 180:121788. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121788

    Article  CAS  Google Scholar 

  13. He H, Xing Y, Wang R, Lu Y, Zhang L, Li F (2023) Optimization design of cooling system for injection molding mold of non-pneumatic tire. Therm Sci Eng Prog 42:101866. https://doi.org/10.1016/j.tsep.2023.101866

    Article  CAS  Google Scholar 

  14. Kuo CC, Tasi QZ, Xie BX, Huang JM, Qiu SX (2022) Improving the quality of a circular cooling channel fabrication by fused filament fabrication using Taguchi methods. Int J Adv Manuf Technol 120:3353–3364. https://doi.org/10.1007/s00170-022-08986-8

    Article  Google Scholar 

  15. Mahto LK, Agrawal Y (2021) Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method. Int J Eng Res 3:69–72

    Google Scholar 

  16. Li K, Yan S, Zhong Y, Pan W, Zhao G (2019) Multi-objective optimization of the fiber-reinforced composite injection molding process using Taguchi method, RSM, and NSGA-II. Simul Model Pract Theory 91:69–82. https://doi.org/10.1016/j.simpat.2018.09.003

    Article  Google Scholar 

  17. Hentati F, Hadriche I, Masmoudi N, Bradai C (2019) Optimization of the injection molding process for the PC/ABS parts by integrating Taguchi approach and CAE simulation. Int J Adv Manuf Technol 104:4353–4363. https://doi.org/10.1007/s00170-019-04283-z

    Article  Google Scholar 

  18. Moayyedian M, Qazani MRC, Pourmostaghimi V (2023) Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver. Int J Adv Manuf Technol 124:297–313. https://doi.org/10.1007/s00170-022-10551-2

    Article  Google Scholar 

  19. Shetty B, Reddy JS, Lakshmikanthan A, Manjunath PG, MalikV, (2022) Design and Fabrication of Injection Molds to Manufacture Double Channel Laryngoscope for Effective Airway Management: Taguchi Method for Surface Roughness Optimization. Key Eng Mater 924:129–140. https://doi.org/10.4028/p-crmxz6

    Article  Google Scholar 

  20. Zhao NY, Lian JY, Wang PF, Xu ZB (2022) Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: A review. Int J Adv Manuf Technol 120(1–2):85–101. https://doi.org/10.1007/s00170-022-08859-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han, S (2023) Optimization of Plastic Speed Meter Housing for Automobiles: Injection Molding Simulation, Taguchi Method and Machine Learning. Mater Plast 60:3. https://doi.org/10.37358/Mat.Plast.1964

  22. Selvam A, Mayilswamy S, Whenish R (2022) Multi-objective optimization and prediction of surface roughness and printing time in FFF printed ABS polymer. Sci Rep 12:16887. https://doi.org/10.1038/s41598-022-20782-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Kumar P, Gupta P, Singh I (2023) Optimisation of extrusion process parameters to make ABS-PC filament for 3D printing using Taguchi-GRA technique. Adv Mater Process 1–22. https://doi.org/10.1080/2374068X.2023.2204458.

  24. Chen J, Cui Y, Liu Y, Cui J (2023) Design and parametric optimization of the injection molding process using statistical analysis and numerical simulation. Proc 11:414. https://doi.org/10.3390/pr11020414

    Article  CAS  Google Scholar 

  25. Öktem H, Shinde D (2021) Determination of optimal process parameters for plastic injection molding of polymer materials using multi-objective optimization. J Mater Eng Perf 30:8616–8632. https://doi.org/10.1007/s11665-021-06029-z

    Article  CAS  Google Scholar 

  26. Chen WH, Uribe MC, Kwon EE, Lin KYA, Park YK, Ding L, Saw LH (2022) A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM). Renew Sust Energ Rev 169:112917. https://doi.org/10.1016/j.rser.2022.112917

    Article  Google Scholar 

  27. Nagaraja B, Almeida F, Ali Y, Kumar P, Ajaykumar AR, Al Mdallal Q (2023) Empirical study for Nusselt number optimization for the flow using ANOVA and Taguchi method. Case Stud Therm Eng 50:103505. https://doi.org/10.1016/j.csite.2023.103505

    Article  Google Scholar 

  28. Zhang J, Ji W, Yuan Y, Nan, W, Zeng Y (2023) Experimental Study on Pyrolysis Products and Combustion Characteristics of Pc/Abs and Pp Suitcase Materials in the Passenger Train. Abs and Pp Suitcase Materials in the Passenger Train. https://doi.org/10.2139/ssrn.4403388.

  29. Wu X, Bourbigot S, Li K, Zou Y (2022) Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Saf J 128:103543. https://doi.org/10.1016/j.firesaf.2022.10354

    Article  CAS  Google Scholar 

  30. Aid S, Eddhahak A, Ortega Z, Froelich D, Tcharkhtchi A (2017) Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect. J Appl Polym Sci 134:25. https://doi.org/10.1002/app.44975

    Article  CAS  Google Scholar 

  31. Bano S, Iqbal T, Ramzan N, Farooq U (2021) Study of surface mechanical characteristics of ABS/PC blends using nanoindentation. Proc 9:637. https://doi.org/10.3390/pr9040637

    Article  CAS  Google Scholar 

  32. Li J, Chen F, Yang L, Jiang L, Dan Y (2017) FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochim Acta A: Mol Biomol Spectrosc 184:361–367. https://doi.org/10.1016/j.saa.2017.04.075

    Article  CAS  PubMed  ADS  Google Scholar 

  33. De Assis CLF, Rampazo CA (2024) Assessment of the mechanical properties of PC/ABS blends for functional prototyping by FFF 3D printing. Rapid Prototyp J 30:214–227. https://doi.org/10.1108/RPJ-04-2023-0153

    Article  Google Scholar 

  34. Kannan S, Ramamoorthy M (2020) Mechanical characterization and experimental modal analysis of 3D Printed ABS, PC and PC-ABS materials. Mater Res Exp 7:015341. https://doi.org/10.1088/2053-1591/ab6a48

    Article  CAS  Google Scholar 

  35. Harris M, Potgieter J, Ray S, Archer R, Arif KM (2019) Acrylonitrile butadiene styrene and polypropylene blend with enhanced thermal and mechanical properties for fused filament fabrication. Mater 12:4167. https://doi.org/10.3390/ma12244167

    Article  CAS  Google Scholar 

  36. Liu Y, Yao WL (2016) Mechanical behavior, thermal properties and microstructure analysis of marine ABS/PC Alloy. Int J Sim: Sys Sci Tech 17:25. https://doi.org/10.5013/IJSSST.a.17.25.13

    Article  Google Scholar 

  37. Eddhahak A (2021) On a contribution to study some mechanical properties of WEEE recycled polymer blends. J Appl Polym Sci 138:51250. https://doi.org/10.1002/app.51250

    Article  CAS  Google Scholar 

  38. Idayu N, Ali MAM, Fauadi MM, Razak Z, Khadim KJ (2023) optimization of injection moulding parameters in reducing cavity pressure using taguchi method. J Adv Manuf Technol 17:2

    Google Scholar 

  39. Terzioğlu H (2020) Analysis of effect factors on thermoelectric generator using Taguchi method. Meas 149:106992. https://doi.org/10.1016/j.measurement.2019.106992

    Article  Google Scholar 

  40. Sabarish KV, Pratheeba P (2020) An experimental analysis on structural beam with Taguchi orthogonal array. Mater Today: Proc 22:874–878. https://doi.org/10.1016/j.matpr.2019.11.049

    Article  Google Scholar 

  41. Souissi N, Souissi S, Lecompte JP et al (2015) Improvement of ductility for squeeze cast 2017 A wrought aluminum alloy using the Taguchi method. Int J Adv Manuf Technol 78:2069–2077. https://doi.org/10.1007/s00170-015-6792-0

    Article  Google Scholar 

  42. Dal Lago E, Cagnin E, Boaretti C, Roso M, Lorenzetti A, Modesti M (2019) Influence of different carbon-based fillers on electrical and mechanical properties of a PC/ABS blend. Polym 12:29. https://doi.org/10.3390/polym12010029

    Article  CAS  Google Scholar 

  43. Kumar M, Ramakrishnan R, Omarbekova A (2021) Experimental characterization of mechanical properties and microstructure study of polycarbonate (PC) reinforced acrylonitrile-butadiene-styrene (ABS) composite with varying PC loadings. AIMS Mater Sci 8(1). https://doi.org/10.3934/matersci.2021002

  44. Hentati F, Masmoudi N (2022) Taguchi Approach: The Impact of Injection Molding Parameters on the Yielding Strength of PC/ABS Blend. In Advances in Mechanical Engineering and Mechanics II: Selected Papers from the 5th Tunisian Congress on Mechanics, CoTuMe 2021, March 22–24, 2021 (pp. 285–291). Springer International Publishing. https://doi.org/10.1007/978-3-030-86446-0_37.

  45. Mohamed OA, Masood SH, Bhowmik JL et al (2016) Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment. J of Materi Eng Perform 25:2922–2935. https://doi.org/10.1007/s11665-016-2157-6

    Article  CAS  Google Scholar 

  46. Li Y, Chen JC, Ali WM (2021) Process optimization and in-mold sensing enabled dimensional prediction for high precision injection molding. Int J Interact Des Manuf :1–17. https://doi.org/10.1007/s12008-021-00800-1.

  47. Pontes FJ, De Paiva AP, Balestrassi PP, Ferreira JR, Da Silva MB (2012) Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst Appl 39:7776–7787. https://doi.org/10.1016/j.eswa.2012.01.058

    Article  Google Scholar 

  48. Mohamed OA, Masood SH, Ruan D (202). Parametric analysis of FDM process parameters’ effect on the surface roughness of PC-ABS polymeric material. In AIP Conference Proceedings 1:2631. AIP Publishing. https://doi.org/10.1063/5.0131570.

  49. Kaur G, Pavia S (2020) Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyoxymethylene (POM) and ABS/PC blend waste. J Build Eng 31:101341. https://doi.org/10.1016/j.jobe.2020.101341

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the help of the SKG staff during the materialization of this study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Hentati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Authors confirm that the submitted work is original, and it have not been published elsewhere in any form or language.

Data assessment

All the concerned data have already been contained in the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hentati, F., Masmoudi, N. The impact of injection molding process parameters on mechanical properties and microstructure of PC/ABS blends using Taguchi approach. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05212-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05212-1

Keywords

Navigation