Skip to main content
Log in

Chitosan-modified graphene oxide filled photo-curable nanocomposite coating with advanced properties

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study presents the eco-friendly composites coating with advanced properties that are prepared by chitosan (CS)-modified graphene oxide (GO) filled acrylic-based coating. Photo-curable acrylic-based nanocomposite containing different amounts of chitosan-modified graphene oxide (CS–GO) and the effect of CS–GO on the coating morphology, UV-curing, transparency, tribological, antimicrobial, thermal and anticorrosion properties was studied. The curing study confirmed that the CS–GO absorbed photon but did not affect the final conversion of the coatings. The results of corrosion analysis demonstrated that the CS–GO filled nanocomposite coatings have higher corrosion protection ability than that of pure acrylic and GO filled coatings. The antimicrobial properties of CS–GO filled coating showed that the antimicrobial performance enhanced as the concentration of CS–GO increased. The optical transmittance study shows that the coating's film transparency decreased with increasing CS–GO concentration, but all of the nanocomposite coatings have a high visible transmittance. This study attributes the enhanced properties to the dispersion of the chitosan-modified GO, which greatly improved the interfacial strength of CS–GO and polymeric matrix and enhanced corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ceccia S, Turcato EA, Maffettone PL, Bongiovanni R (2008) Nanocomposite UV-cured coatings: organoclay intercalation by an epoxy resin. Prog Org Coat 63:110–115. https://doi.org/10.1016/j.porgcoat.2008.04.012

    Article  CAS  Google Scholar 

  2. Shemper BS, Morizur JF, Alirol M et al (2004) Synthetic clay nanocomposite-based coatings prepared by UV-cure photopolymerization. J Appl Polym Sci 93:1252–1263. https://doi.org/10.1002/app.20580

    Article  CAS  Google Scholar 

  3. Decker C, Keller L, Zahouily K, Benfarhi S (2005) Synthesis of nanocomposite polymers by UV-radiation curing. Polymer 46:6640–6648. https://doi.org/10.1016/j.polymer.2005.05.018

    Article  CAS  Google Scholar 

  4. Dixit A, Wazarkar K, Sabnis AS (2021) Antimicrobial UV curable wood coatings based on citric acid. Pigment Resin Technol 50:533–544. https://doi.org/10.1108/PRT-07-2020-0067

    Article  Google Scholar 

  5. Uh FM, Davuluri SP, Wong SC, Webster DC (2004) Nanoclay reinforced UV curable high-barrier coatings. Compos Technol 2020:719–724

    Google Scholar 

  6. Belon C, Chemtob A, Croutxé-Barghorn C et al (2010) Nanocomposite coatings via simultaneous organic-inorganic photo-induced polymerization: synthesis, structural investigation and mechanical characterization. Polym Int 59:1175–1186. https://doi.org/10.1002/pi.2846

    Article  CAS  Google Scholar 

  7. Xiao C, Zheng K, Chen S et al (2023) Additive manufacturing of high solid content lunar regolith simulant paste based on vat photopolymerization and the effect of water addition on paste retention properties. Addit Manuf 71:103607. https://doi.org/10.1016/j.addma.2023.103607

    Article  CAS  Google Scholar 

  8. Sangermano M, Malucelli G, Amerio E et al (2005) Photopolymerization of epoxy coatings containing silica nanoparticles. Prog Org Coat 54:134–138. https://doi.org/10.1016/j.porgcoat.2005.05.004

    Article  CAS  Google Scholar 

  9. Amerio E, Sangermano M, Malucelli G et al (2005) Preparation and characterization of hybrid nanocomposite coatings by photopolymerization and sol-gel process. Polymer 46:11241–11246. https://doi.org/10.1016/j.polymer.2005.09.062

    Article  CAS  Google Scholar 

  10. Njoku CN, Arukalam IO, Bai W, Li Y (2018) Optimizing maleic anhydride microcapsules size for use in self-healing epoxy-based coatings for corrosion protection of aluminum alloy. Mater Corros 69:1257–1267. https://doi.org/10.1002/maco.201709972

    Article  CAS  Google Scholar 

  11. Arukalam IO, Ishidi EY, Obasi HC et al (2020) Exploitation of natural gum exudates as green fillers in self-healing corrosion-resistant epoxy coatings. J Polym Res 27:1. https://doi.org/10.1007/s10965-020-02055-y

    Article  CAS  Google Scholar 

  12. Keller L, Decker C, Zahouily K et al (2004) Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins. Polymer 45:7437–7447. https://doi.org/10.1016/j.polymer.2004.08.040

    Article  CAS  Google Scholar 

  13. Sangermano M, Amerio E, Priola A et al (2006) Preparation and characterization of acrylic resin/titania hybrid nanocomposite coatings by photopolymerization and sol-gel process. J Appl Polym Sci 102:4659–4664. https://doi.org/10.1002/app.24707

    Article  CAS  Google Scholar 

  14. Wang YY, Hsieh TE (2005) Preparation and properties of polyacrylate/clay photocured nanocomposite materials. Chem Mater 17:3331–3337. https://doi.org/10.1021/cm0487268

    Article  CAS  Google Scholar 

  15. Uhl FM, Webster DC, Davuluri SP, Wong SC (2006) UV curable epoxy acrylate-clay nanocomposites. Eur Polym J 42:2596–2605. https://doi.org/10.1016/j.eurpolymj.2006.06.016

    Article  CAS  Google Scholar 

  16. Cho JD, Kim YB, Ju HT, Hong JW (2005) The effects of silica nanoparticles on the photocuring behaviors of UV-curable polyester acrylate-based coating systems. Macromol Res 13:362–365. https://doi.org/10.1007/BF03218467

    Article  CAS  Google Scholar 

  17. Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6:135–176. https://doi.org/10.1007/s11998-008-9144-2

    Article  CAS  Google Scholar 

  18. Yang F, Liu T, Li J et al (2018) Anticorrosive behavior of a zinc-rich epoxy coating containing sulfonated polyaniline in 3.5% NaCl solution. RSC Adv 8:13237–13247. https://doi.org/10.1039/c8ra00845k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang C, Zhang X, Santosh M et al (2020) Zircon Hf–O–Li isotopes of granitoids from the central Asian orogenic belt: implications for supercontinent evolution. Gondwana Res 83:132–140. https://doi.org/10.1016/j.gr.2020.02.003

    Article  CAS  Google Scholar 

  20. Pecora M, Pannier Y, Lafarie-Frenot MC et al (2016) Effect of thermo-oxidation on the failure properties of an epoxy resin. Polym Test 52:209–217. https://doi.org/10.1016/j.polymertesting.2016.04.008

    Article  CAS  Google Scholar 

  21. Woo RSC, Chen Y, Zhu H et al (2007) Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: photo-degradation. Compos Sci Technol 67:3448–3456. https://doi.org/10.1016/j.compscitech.2007.03.004

    Article  CAS  Google Scholar 

  22. Foroutani K, Pourabbas B, Sharif M et al (2014) In situ deposition of polythiophene nanoparticles on flexible transparent films: effect of the process conditions. Mater Sci Semicond Process 19:57–65. https://doi.org/10.1016/j.mssp.2013.11.012

    Article  CAS  Google Scholar 

  23. Zhao X, Fan B, Qiao N et al (2024) Stabilized Ti3C2Tx-doped 3D vesicle polypyrrole coating for efficient protection toward copper in artificial seawater. Appl Surf Sci 642:158639. https://doi.org/10.1016/j.apsusc.2023.158639

    Article  CAS  Google Scholar 

  24. Wang K, Zhu J, Wang H et al (2022) Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J Adv Ceram 11:1571–1582. https://doi.org/10.1007/s40145-022-0630-2

    Article  CAS  Google Scholar 

  25. Xie J, Chen Y, Yin L et al (2021) Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J Manuf Process 64:473–480. https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  26. Cho JD, Ju HT, Hong JW (2005) Photocuring kinetics of UV-initiated free-radical photopolymerizations with and without silica nanoparticles. J Polym Sci Part A Polym Chem 43:658–670. https://doi.org/10.1002/pola.20529

    Article  CAS  Google Scholar 

  27. Xu GC, Li AY, De ZL et al (2003) Synthesis and characterization of silica nanocomposite in situ photopolymerization. J Appl Polym Sci 90:837–840. https://doi.org/10.1002/app.12650

    Article  CAS  Google Scholar 

  28. Foroutani K, Pourabbas B, Sharif M et al (2014) Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater Sci Semicond Process 18:6–14. https://doi.org/10.1016/j.mssp.2013.10.015

    Article  CAS  Google Scholar 

  29. Chen J, Zhang Z, Lu H (2022) Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf Interfaces 33:102289. https://doi.org/10.1016/j.surfin.2022.102289

    Article  CAS  Google Scholar 

  30. Esmaeili-Faraj SH, Hassanzadeh A, Shakeriankhoo F et al (2021) Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: experimental analysis and modeling by the response surface methodology. Chem Eng Process Process Intensif 164:108396. https://doi.org/10.1016/j.cep.2021.108396

    Article  CAS  Google Scholar 

  31. Dhanola A, Bisht AS, Kumar A, Kumar A (2018) Influence of natural fillers on physico-mechanical properties of luffa cylindrica/ polyester composites. Mater Today Proc 5:17021–17029. https://doi.org/10.1016/j.matpr.2018.04.107

    Article  CAS  Google Scholar 

  32. Kocaman S, Ahmetli G, Materials A (2016) Eco-friendly natural filler based epoxy composites. Int J Chem Mol Eng 10:471–474

    Google Scholar 

  33. Zhang X, Tang Y, Zhang F, Lee CS (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6:1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  34. Huang Z, Luo P, Jia S et al (2022) A sulfur-doped carbon-enhanced Na3V2(PO4)3 nanocomposite for sodium-ion storage. J Phys Chem Solids 167:110746. https://doi.org/10.1016/j.jpcs.2022.110746

    Article  CAS  Google Scholar 

  35. Ashassi-Sorkhabi H, Kazempour A (2020) Chitosan, its derivatives and composites with superior potentials for the corrosion protection of steel alloys: a comprehensive review. Carbohydr Polym 237:116110. https://doi.org/10.1016/j.carbpol.2020.116110

    Article  CAS  PubMed  Google Scholar 

  36. John S, Joseph A, Jose AJ, Narayana B (2015) Enhancement of corrosion protection of mild steel by chitosan/ZnO nanoparticle composite membranes. Prog Org Coat 84:28–34. https://doi.org/10.1016/j.porgcoat.2015.02.005

    Article  CAS  Google Scholar 

  37. Zheludkevich ML, Tedim J, Freire CSR et al (2011) Self-healing protective coatings with “green” chitosan based pre-layer reservoir of corrosion inhibitor. J Mater Chem 21:4805–4812. https://doi.org/10.1039/c1jm10304k

    Article  CAS  Google Scholar 

  38. Selvam V, Kumar MSC, Vadivel M (2013) Mechanical properties of epoxy/chitosan biocomposites. Int J Chem Sci 11:1103–1109

    CAS  Google Scholar 

  39. Jabeen S, Saeed S, Kausar A et al (2016) Influence of chitosan and epoxy cross-linking on physical properties of binary blends. Int J Polym Anal Charact 21:163–174. https://doi.org/10.1080/1023666X.2016.1131404

    Article  CAS  Google Scholar 

  40. Ahmad B, Ashfaq M, Joy A, Carlos ZASM (2017) Fabrication and characterization of an eco-friendly biodegradable epoxy/chitosan composites. Am J Mater Sci 7:166–169

    CAS  Google Scholar 

  41. El-Fattah MA, El Saeed AM, Azzam AM et al (2016) Improvement of corrosion resistance, antimicrobial activity, mechanical and chemical properties of epoxy coating by loading chitosan as a natural renewable resource. Prog Org Coat 101:288–296. https://doi.org/10.1016/j.porgcoat.2016.09.002

    Article  CAS  Google Scholar 

  42. Ma IW, Sh A, Ramesh K, Vengadaesvaran B, Ramesh S, Arof AK (2017) Anticorrosion properties of epoxy-nanochitosan nanocomposite coating. Progress Org Coat 113:74–81. https://doi.org/10.1016/j.porgcoat.2017.08.014

    Article  CAS  Google Scholar 

  43. Khakpour M, Vaferi B (2023) Experimental and modeling analyses of stability and thermophysical characteristics of graphene oxide, carbon nanotube, and silicon carbide dispersion in propylene glycol. Heat Transf Res 54:1–15. https://doi.org/10.1615/HeatTransRes.2023047129

    Article  Google Scholar 

  44. Rana VK, Choi MC, Kong JY et al (2011) Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol Mater Eng 296:131–140. https://doi.org/10.1002/mame.201000307

    Article  CAS  Google Scholar 

  45. Wang Z, Fu W, Hu L et al (2021) Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: possessed redox characteristics and secreted endogenous electron mediator. Sci Total Environ 781:146686. https://doi.org/10.1016/j.scitotenv.2021.146686

    Article  CAS  Google Scholar 

  46. Huang Z, Luo P, Wu Q, Zheng H (2022) Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J Phys Chem Solids 161:110479. https://doi.org/10.1016/j.jpcs.2021.110479

    Article  CAS  Google Scholar 

  47. Fang M, Wang K, Lu H et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105. https://doi.org/10.1039/b908220d

    Article  CAS  Google Scholar 

  48. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658. https://doi.org/10.1016/j.carbpol.2010.08.038

    Article  CAS  Google Scholar 

  49. Zare M, Sharif M, Kashkooli A (2014) Study on the effect of polypyrrole and polypyrrole/graphene oxide nanoparticles on the microstructure, electrical and tensile properties of polypropylene nanocomposites. Polym Plast Technol Eng 53:1392–1401. https://doi.org/10.1080/03602559.2014.909472

    Article  CAS  Google Scholar 

  50. Le TT, Nguyen TV, Nguyen TA et al (2019) Thermal, mechanical and antibacterial properties of water-based acrylic polymer/SiO2–Ag nanocomposite coating. Mater Chem Phys 232:362–366. https://doi.org/10.1016/j.matchemphys.2019.05.001

    Article  CAS  Google Scholar 

  51. Nguyen TV, Do TV, Ha MH et al (2020) Crosslinking process, mechanical and antibacterial properties of UV-curable acrylate/Fe3O4-Ag nanocomposite coating. Prog Org Coat 139:105325. https://doi.org/10.1016/j.porgcoat.2019.105325

    Article  CAS  Google Scholar 

  52. Shimazaki Y, Miyazaki Y, Takezawa Y et al (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromol 8:2976–2978. https://doi.org/10.1021/bm7004998

    Article  CAS  Google Scholar 

  53. Iijima T, Miura S, Fukuda W, Tomoi M (1993) Effect of cross-link density on modification of epoxy resins by N-phenylmaleimide-styrene copolymers. Eur Polym J 29:1103–1113

    Article  CAS  Google Scholar 

  54. Su Y, Shen Z, Long X et al (2023) Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution. Mater Sci Eng A 872:145001. https://doi.org/10.1016/j.msea.2023.145001

    Article  CAS  Google Scholar 

  55. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244. https://doi.org/10.1016/S0168-1605(01)00609-2

    Article  CAS  PubMed  Google Scholar 

  56. Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022

    Article  CAS  PubMed  Google Scholar 

  57. Carlson RP, Taffs R, Davison WM, Stewart PS (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci Polym Ed 19:1035–1046. https://doi.org/10.1163/156856208784909372

    Article  CAS  PubMed  Google Scholar 

  58. Zhu S, Zhu J, Ye S et al (2023) High-entropy rare earth titanates with low thermal conductivity designed by lattice distortion. J Am Ceram Soc 106:6279–6291. https://doi.org/10.1111/jace.19233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research for this paper was financially supported by the Islamic Azad University, Shiraz Branch, Iran, through project entitled “Enhancement of properties in epoxy resins using chitosan biopolymer and graphene oxide nanoparticles (No 1630110170003).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Tavakoli, S. Chitosan-modified graphene oxide filled photo-curable nanocomposite coating with advanced properties. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05202-3

Keywords

Navigation