Skip to main content

Advertisement

Log in

Evaluation of the effect of polymer composition on the rheological, mechanical properties and drug-released behavior of novel Eudragit L100-55/gelatin gastro-resistance uncoated capsule

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Capsules have been investigated as a popular oral dosage form among communities due to their simplicity and ease of production. Capsules that are considered in the gastro-resistance category can be very beneficial due to enhanced drug absorption, improved stability, targeted release, etc. This study investigated the effect of enteric polymers on uncoated hard capsule fabrication and dissolution properties. The polymers used in this study included HPMCPh and Eudragit L100-55. Eight different formulations based on HPMCPh, Eudragit, and gelatin were examined to identify the ideal formulation for the product of uncoated enteric hard capsules with preferred physicochemical and gastro-resistance properties. The results reveal that the capsules containing Eudragit (F1), HPMCPh (F2), Eudragit/HPMCPh/gelatin (F3), and Eudragit/gelatin (F4) are steady within the simulated stomach environment, and drug release does not occur for 120 min. The outcomes demonstrate that, among the proposed formulas, the F4 formula is suitable both in terms of capsulation form and delayed-release properties and shows no microbial growth. The properties of the optimized sample were studied by FTIR, FESEM, tensile strength, humidity, and rheology. The results illustrated that gelatin-based hydrogels with Eudragit (F4) are potential candidates for manufacturing uncoated enteric hard capsules that inhibit drug release in a gastric pH medium and act as a pH-sensitive drug-release system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Gullapalli RP, Mazzitelli CL (2017) Gelatin and non-gelatin capsule dosage forms. J Pharm Sci 106(6):1453–1465. https://doi.org/10.1016/j.xphs.2017.02.006

    Article  PubMed  CAS  Google Scholar 

  2. Overgaard A, Moller-Sonnergaard J, Christrup LL, Hojsted J, Hansen R (2001) Patients’ evaluation of shape, size and colour of solid dosage forms. Pharm World Sci 23:185–188. https://doi.org/10.1023/A:1012050931018

    Article  PubMed  CAS  Google Scholar 

  3. Hoag S (2017) Capsules dosage form: formulation and manufacturing considerations. Develop Solid Oral Dosage Forms. https://doi.org/10.1016/B978-0-12-802447-8.00027-3

    Article  Google Scholar 

  4. Kathpalia H, Sharma K, Doshi G (2014) Recent trends in hard gelatin capsule delivery system. J Adv Pharm 4:165–177

    CAS  Google Scholar 

  5. Ku MS, Li W, Dulin W, Donahue F, Cade D, Benameur H, Hutchison K (2010) Performance qualification of a new hypromellose capsule: Part I. Comparative evaluation of physical, mechanical and processability quality attributes of VCaps Plus®, Quali-V® and gelatin capsules. Int J Pharm 386:30–41. https://doi.org/10.1016/j.ijpharm.2009.10.050

    Article  CAS  Google Scholar 

  6. He H, Ye J, Zhang X, Huang Y, Li X, Xiao M (2017) κ-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohyd Polym 175:417–424. https://doi.org/10.1016/j.carbpol.2017.07.049

    Article  CAS  Google Scholar 

  7. Mariod AA, Fadul H (2013) Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum Technologia Alimentaria 12(2):135–147

    CAS  Google Scholar 

  8. Nogami S, Uchiyama H, Kadota K, Tozuka Y (2021) Design of a pH-responsive oral gel formulation based on the matrix systems of gelatin/hydroxypropyl methylcellulose phthalate for controlled drug release. Int J Pharm 592:120047. https://doi.org/10.1016/j.ijpharm.2020.120047

    Article  PubMed  CAS  Google Scholar 

  9. Ali SFB, Afrooz H, Hampel R, Mohamed EM, Bhattacharya R, Cook P, Khan MA, Rahman Z (2019) Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs. Int J Pharm 567:118462. https://doi.org/10.1016/j.ijpharm.2019.118462

    Article  PubMed  CAS  Google Scholar 

  10. Mašková E, Kubova K, Raimi-Abraham BT, Vllasaliu D, Vohlidalova E, Turanek J, Masek J (2020) Hypromellose–A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release 324:695–727. https://doi.org/10.1016/j.jconrel.2020.05.045

    Article  PubMed  CAS  Google Scholar 

  11. Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Iwase H, Tominaga T, Yamada T, Takata S, Shibayama M, Tozuka Y (2021) Structural changes in pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blends aimed at drug-release systems. Int J Biol Macromol 190:989–998. https://doi.org/10.1016/j.ijbiomac.2021.09.074

    Article  PubMed  CAS  Google Scholar 

  12. Gadkari PV, Tu S, Chiyarda K, Reaney MJT, Ghosh S (2018) Rheological characterization of fenugreek gum and comparison with other galactomannans. Int J Biol Macromol 119:486–495. https://doi.org/10.1016/j.ijbiomac.2018.07.108

    Article  PubMed  CAS  Google Scholar 

  13. Yao Y, Xia M, Wang H, Li G, Shen H, Meng Q, Xie Y (2016) Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 91:144–153. https://doi.org/10.1016/j.ejps.2016.06.014

    Article  PubMed  CAS  Google Scholar 

  14. Zhao X, Wang Z (2019) A pH-sensitive microemulsion-filled gellan gum hydrogel encapsulated apigenin: Characterization and in vitro release kinetics. Colloids Surf B 178:245–252. https://doi.org/10.1016/j.colsurfb.2019.03.015

    Article  ADS  CAS  Google Scholar 

  15. Yang N, Chen H, Jin Z, Hou J, Zhang Y, Han H, Shen Y, Guo S (2020) Moisture sorption and desorption properties of gelatin, HPMC and pullulan hard capsules. Int J Biol Macromol 159:659–666. https://doi.org/10.1016/j.ijbiomac.2020.05.110

    Article  PubMed  CAS  Google Scholar 

  16. Ferrari PC, Oliveira GF, Chibebe FCS, Evangelista RC (2009) In vitro characterization of coevaporates containing chitosan for colonic drug delivery. Carbohyd Polym 78(3):557–563. https://doi.org/10.1016/j.carbpol.2009.05.021

    Article  CAS  Google Scholar 

  17. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS (2019) Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: towards cancer chemotherapy. Int J Biol Macromol 141:388–400. https://doi.org/10.1016/j.ijbiomac.2019.09.013

    Article  PubMed  CAS  Google Scholar 

  18. Barbosa JA, Kauraishi MM, Smith AM, Conway BR, Merchant HA (2019) Achieving gastroresistance without coating: formulation of capsule shells from enteric polymers. Eur J Pharm Biopharm 144:174–179

    Article  PubMed  CAS  Google Scholar 

  19. Mohseni MN, Darzi GN, Ramezani R, Jahani A (2022) A developed composite hard-gelatin capsules: delayed-release enteric properties. Heliyon 8(12):12265. https://doi.org/10.1016/j.heliyon.2022.e12265

    Article  CAS  Google Scholar 

  20. Sun W, Wang D, Ouyang W (2018) Optimization of coating technology for enteric hydroxypropyl methyl cellulose vacant capsules. Chin J Pharm 49(7):975–980

    Google Scholar 

  21. Cerea M, Foppoli A, Maroni A, Palugan L, Zema L, Sangalli ME (2008) Dry coating of soft gelatin capsules with HPMCAS. Drug Dev Ind Pharm 34(11):1196–1200

    Article  PubMed  CAS  Google Scholar 

  22. Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M (2017) Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 253:46–63. https://doi.org/10.1016/j.jconrel.2017.02.021

    Article  PubMed  CAS  Google Scholar 

  23. Yoo JW, Giri N, Lee CH (2011) pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 403:262–267. https://doi.org/10.1016/j.ijpharm.2010.10.032

    Article  PubMed  CAS  Google Scholar 

  24. De Oliveira H, Albuquerque JJF, Nogueiras C, Rieumont J (2009) Physical chemistry behavior of enteric polymer in drug release systems. Int J Pharm 366:185–189. https://doi.org/10.1016/j.ijpharm.2008.08.041

    Article  PubMed  CAS  Google Scholar 

  25. De Jaeghere F, Allemann E, Doelker E, Gurny R, Cerny R, Galli B, Steulet AF, Muller I, Schutz H (2001) pH-dependent dissolving nano-and microparticles for improved peroral delivery of a highly lipophilic compound in dogs. AAPS PharmSci 3:92–99. https://doi.org/10.1208/ps030108

    Article  PubMed Central  Google Scholar 

  26. Vattanagijyingyong Y, Kulvanich P, Chatchawalsaisin J (2022) Fabrication of delayed release hard capsule shells from zein/methacrylic acid copolymer blends. Eur J Pharm Sci 171:106124. https://doi.org/10.1016/j.ejps.2022.106124

    Article  PubMed  CAS  Google Scholar 

  27. Silva DA, Al-Gousous J, Davies NM, Chacra NB, Webster GK, Lipka E, Amidon G, Lobenberg R (2019) Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: the hidden role of bicarbonate buffer. Eur J Pharm Biopharm 142:8–19. https://doi.org/10.1016/j.ejpb.2019.06.006

    Article  CAS  Google Scholar 

  28. Sagar S, Kumar R (2014) Role of SOS response in bacterial drug resistance. Int J Pharm Sci Rev Res 25(1):102–105

    Google Scholar 

  29. Thombre SK, Gaikwad SS (2013) Design and development of mucoadhesive buccal delivery for Pantoprazole with stability enhancement in human saliva. Int J Pharm Pharm Sci 5(2):122–127

    CAS  Google Scholar 

  30. Franc A, Vetchý D, Fülöpová N (2022) Commercially available enteric empty hard capsules. Prod Technol Appl Pharm 15(11):1398. https://doi.org/10.3390/ph15111398

    Article  CAS  Google Scholar 

  31. Capsule Size Guide. Available from: https://www.lfacapsulefillers.com/capsule-size-chart

  32. Capsule sizes. Available from: https://www.medisca.com/Files/ReferenceCharts/Capsule%20Size%20Reference%20Chart%20-%20MUS%20&%20MCA.pdf

  33. Maciejewski B, Weitschies W, Schneider F, Sznitowska M (2017) Gastroresistant gelatin films prepared by addition of cellulose acetate phthalate. Die Pharmazie-An Int J Pharm Sci 72(6):324–328. https://doi.org/10.1691/ph.2017.6186

    Article  CAS  Google Scholar 

  34. Park HJ, Yi JB, Bae HJ, Kim YT, Cha DS (2009) Film-forming composition for hard capsules comprising fish gelatin and its preparation method. Google Patents

  35. Pandit AP, Mathur VB (2014) Formulation and development of two-compartment hpmc capsule for concurrent administration of drugs. Pharma Innov 2:79

    Google Scholar 

  36. Felton L, Shah NH, Zhang G, Infeld MH, Malick AW, McGinity JW (1996) Physical-mechanical properties of film-coated soft gelatin capsules. Int J Pharm 127(2):203–211. https://doi.org/10.1016/0378-5173(95)04212-1

    Article  CAS  Google Scholar 

  37. Dewan I, Islam MM, Al-Hasan M, Nath J, Sultana S, Rana MS (2015) Surface deposition and coalescence and coacervation phase separation methods: in vitro study and compatibility analysis of Eudragit RS30D, Eudragit RL30D, and Carbopol-PLA loaded metronidazole microspheres. J Pharm. https://doi.org/10.1155/2015/254930

    Article  Google Scholar 

  38. Thakral S, Thakral NK, Majumdar DK (2013) Eudragit®: a technology evaluation. Expert Opin Drug Deliv 10(1):131–149

    Article  PubMed  CAS  Google Scholar 

  39. Patel MM, Amin AF (2013) Development of a novel tablet-in-capsule formulation of mesalamine for inflammatory bowel disease. Pharm Dev Technol 18(2):390–400

    Article  PubMed  CAS  Google Scholar 

  40. Kalmer RR, Karimi A, Golizadeh M, Haddadan MM, Azizi M, Ramezanalizadeh H, Ghanbari M (2022) Effect of different molecular weights of polyethylene glycol as a plasticizer on the formulation of dry powder inhaler capsules: investigation of puncturing size, morphologies, and surface properties. Arab J Chem 15(11):104239. https://doi.org/10.1016/j.arabjc.2022.104239

    Article  CAS  Google Scholar 

  41. Feng Q, Wei K, Zhang K, Yang B, Tian F, Wang G, Bian L (2018) One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Mater 10(1):e455–e455. https://doi.org/10.1038/am.2017.208

    Article  Google Scholar 

  42. Ge H, Wu Y, Woshnak L, Mitmesser SH (2021) Effects of hydrocolloids, acids and nutrients on gelatin network in gummies. Food Hydrocolloids 113:106549. https://doi.org/10.1016/j.foodhyd.2020.106549

    Article  CAS  Google Scholar 

  43. Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Shibayama M, Tozuka Y (2022) Evaluation of the rheological and rupture properties of gelatin-based hydrogels blended with polymers to determine their drug diffusion behavior. Polymer J. https://doi.org/10.1038/s41428-022-00681-5

    Article  Google Scholar 

  44. Kalmer RR, Haddadan MM, Azizi M, Ghanbari M, Samandarian D, Sadjadinia A, Ramezanalizadeh H, Karimi A, Golizadeh M (2023) Industrial manufacture of enteric hard capsules using novel formulations based on hypromellose phthalate/gelatin and investigation of pantoprazole release. ACS Omega 8(12):11293–11303. https://doi.org/10.1021/acsomega.2c08290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kalmer RR, Karimi A, Moosavi S, Ghanbari M, Sadjadinia A, Samandarian D, Ramezanalizadeh H, Dogaheh SG (2024) Novel formulation of uncoated enteric capsule shells: Study the effect of gelling agents and salts on the rheology and physical properties. Mater Chem Phys 312:128614. https://doi.org/10.1016/j.matchemphys.2023.128614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Iran Gelatin Capsule Mfg Co-IGCC for financing this research.

Author information

Authors and Affiliations

Authors

Contributions

CRediT authorship contribution statement: Ramin Ramezani Kalmer was involved in the conceptualization, supervision, project administration, and visualization; Afzal Karimi contributed to the methodology. Samira Gholizadeh Dogaheh assisted in the writing—review and editing, validation, resources, and data curation. Mojgan Ghanbari was involved in the investigation, formal analysis, editing, and software. Dariush Samandarian contributed to the methodology. Atefeh Sadjadinia assisted in the investigation and formal analysis. Hamed Ramezanalizadeh was involved in the data curation, validation, and resources. Seyedehmaryam Moosavi contributed to the investigation and methodology. Notes The authors declare no competing financial interest.

Corresponding authors

Correspondence to Ramin Ramezani Kalmer or Samira Gholizadeh Dogaheh.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmer, R.R., Karimi, A., Dogaheh, S.G. et al. Evaluation of the effect of polymer composition on the rheological, mechanical properties and drug-released behavior of novel Eudragit L100-55/gelatin gastro-resistance uncoated capsule. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05201-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05201-4

Keywords

Navigation