Skip to main content
Log in

Polylactic acid/poly(butylene diglycolate-co-butylene terephthalate) blends with improved toughness

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA), which is widely used in degradable packaging and medicine, has attracted much attention in recent years. However, PLA's ductility and processability still need to be improved. Previous literature indicated that poly(butylene diglycolate-co-butylene terephthalate) (PBDT) had good ductility, and degradability due to the introduction of diglycolic acid's ether group. Based on the above advantages of PBDT, the PLA/PBDT blends were prepared to improve the ductility of PLA. The blends' thermal, crystallinity, mechanical, and rheological properties and compatibility were characterized. The blends all showed greater elongation at break compared to PLA. The WAXD results showed that the tensile specimens of PBDT were semi-crystalline, and the tensile specimens of PLA and the blends were almost amorphous. The incorporation of PBDT caused the fracture behaviour of the blends to change from brittle to ductile behaviour. It is concluded that PBDT can effectively improve the ductility of PLA and the blend with 20 wt.% PBDT has high elongation at break (135%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, Muthusamy G, Arun A (2023) A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. Int J Biol Macromol 234:123715

    Article  PubMed  CAS  Google Scholar 

  2. Qiu S, Zhou Y, Waterhouse GIN, Gong R, Xie J, Zhang K, Xu J (2021) Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem 334:127487

    Article  PubMed  CAS  Google Scholar 

  3. Wufuer R, Li W, Wang S, Duo J (2022) Isolation and degradation characteristics of PBAT film degrading bacteria. Int J Environ Res Public Health 19(24):17087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu Y, Zhang W, Chen M, Zhao X, Liu H, Ge M, Li N, Ning Z, Gao W, Fan C, Li Q (2023) Molecular insights into effects of PBAT microplastics on latosol microbial diversity and DOM chemodiversity. J Hazard Mater 450:131076

    Article  PubMed  CAS  Google Scholar 

  5. Sun Y, Peng B-Y, Wang Y, Wang X, Xia S, Zhao J (2023) Evaluating the adsorption and desorption performance of poly(butylene adipate-co-terephthalate) (PBAT) microplastics towards Cu(II): The roles of biofilms and biodegradation. Chem Eng J 464:142714

    Article  CAS  Google Scholar 

  6. Gao C, Wang Y, Yang Y, Qin S (2023) Poly(lactic acid) synthesized from non-food biomass feedstocks with tin-loaded ZA molecular sieve catalysts by direct melt polycondensation. Polym Int. https://doi.org/10.1002/pi.6594

    Article  Google Scholar 

  7. Sui X, Zhao X, Wang Z, Sun S (2023) Super-ductile and stiff PBAT/PLA biodegradable composites balanced with random PMMA-co-GMA copolymer as compatibilizer. Polym Int 72(3):333–341

    Article  CAS  Google Scholar 

  8. Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H (2022) Poly(butylene succinate) (PBS): materials, processing, and industrial applications. Prog Polym Sci 132:101579

    Article  CAS  Google Scholar 

  9. Georgousopoulou I-N, Vouyiouka S, Dole P, Papaspyrides CD (2016) Thermo-mechanical degradation and stabilization of poly(butylene succinate). Polym Degrad Stab 128:182–192

    Article  CAS  Google Scholar 

  10. Samantaray PK, Little A, Haddleton DM, McNally T, Tan B, Sun Z, Huang W, Ji Y, Wan C (2020) Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chem 22(13):4055–4081

    Article  CAS  Google Scholar 

  11. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  PubMed  CAS  Google Scholar 

  12. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  PubMed  CAS  Google Scholar 

  13. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356

    Article  CAS  Google Scholar 

  14. Zhou J, Wang B, Xu C, Xu Y, Tan H, Zhang X, Zhang Y (2022) Performance of composite materials by wood fiber/polydopamine/silver modified PLA and the antibacterial property. J Market Res 18:428–438

    CAS  Google Scholar 

  15. Zhao X, Li K, Wang Y, Tekinalp H, Larsen G, Rasmussen D, Ginder RS, Wang L, Gardner DJ, Tajvidi M, Webb E, Ozcan S (2020) High-strength polylactic acid (PLA) biocomposites reinforced by epoxy-modified pine fibers. ACS Sustain Chem Eng 8(35):13236–13247

    Article  CAS  Google Scholar 

  16. Puthumana M, Santhana Gopala Krishnan P, Nayak SK (2020) Chemical modifications of PLA through copolymerization. Int J Polym Anal Charact 25(8):634–648

    Article  CAS  Google Scholar 

  17. Zhao X, Yu J, Liang X, Huang Z, Li J, Peng S (2023) Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int J Biol Macromol 233:123581

    Article  PubMed  CAS  Google Scholar 

  18. Nagarajan V, Zhang K, Misra M, Mohanty AK (2015) Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl Mater Interface 7(21):11203–11214

    Article  CAS  Google Scholar 

  19. Shin EJ, Jung YS, Park CH, Lee S (2023) Eco-friendly TPU/PLA blends for application as shape-memory 3D printing filaments. J Polym Environ. https://doi.org/10.1007/s10924-023-02799-w

    Article  Google Scholar 

  20. Kanda GS, Al-Qaradawi I, Luyt AS (2018) Morphology and property changes in PLA/PHBV blends as function of blend composition. J Polym Res 25(9):196

    Article  Google Scholar 

  21. Eom Y, Choi B, Park S-I (2019) A Study on mechanical and thermal properties of PLA/PEO blends. J Polym Environ 27(2):256–262

    Article  CAS  Google Scholar 

  22. Burzic I, Pretschuh C, Kaineder D, Eder G, Smilek J, Másilko J, Kateryna W (2019) Impact modification of PLA using biobased biodegradable PHA biopolymers. Eur Polymer J 114:32–38

    Article  CAS  Google Scholar 

  23. Su S, Duhme M, Kopitzky R (2020) Uncompatibilized PBAT/PLA blends: manufacturability, miscibility and properties. Materials (Basel) 13(21):4897

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Rosenboom J-G, De Lorenzi L, Storti G, Morbidelli M (2018) Reaction kinetics and simulations of ring-opening polymerization for the synthesis of polybutylene terephthalate. Polymer 146:120–132

    Article  CAS  Google Scholar 

  25. Choi EY, Kim SW, Kim CK (2016) In situ grafting of polybutylene terephthalate onto multi-walled carbon nanotubes by melt extrusion, and characteristics of their composites with polybutylene terephthalate. Compos Sci Technol 132:101–107

    Article  CAS  Google Scholar 

  26. Müller RJ, Witt U, Rantze E, Deckwer WD (1998) Architecture of biodegradable copolyesters containing aromatic constituents. Polym Degrad Stab 59(1):203–208

    Article  Google Scholar 

  27. Liu T-Y, Xu P-Y, Dan H, Lu B, Zhen Z-C, Zheng W-Z, Dong Y-C, Li X, Wang G-X, Ji J-H (2023) Enhanced degradation of poly(ethylene terephthalate) by the addition of lactic acid / glycolic acid: composting degradation, seawater degradation behavior and comparison of degradation mechanism. J Hazard Mater 446:130670

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Liu J, Li C, Xiao Y, Wu S, Zhang B (2022) Synthesis and characterization of poly(butylene terephthalate-co-glycolic acid) biodegradable copolyesters. Eur Polymer J 180:111613

    Article  CAS  Google Scholar 

  29. Kabir E, Kaur R, Lee J, Kim K-H, Kwon EE (2020) Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J Clean Prod 258:120536

    Article  CAS  Google Scholar 

  30. Soccio M, Lotti N, Finelli L, Munari A (2010) Thermal characterization of novel aliphatic polyesters with ether and thioether linkages. e-Polymers 10:035

    Article  Google Scholar 

  31. Chen M, Jiang Z, Qiu Z (2023) Synthesis, thermal, and mechanical properties of fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-diglycolate) copolyesters. Polymer 267:125678

    Article  CAS  Google Scholar 

  32. Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Salatelli E, Manaresi P, Munari A (2016) Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: structure-property relationships. Eur Polymer J 81:397–412

    Article  CAS  Google Scholar 

  33. Hu H, Li J, Luo S, Tian Y, Wang J, Zhao Y-L, Zhang R, Zhu J (2022) Design of 2,5-furandicarboxylic based polyesters degraded in different environmental conditions: comprehensive experimental and theoretical study. J Hazard Mater 425:127752

    Article  PubMed  CAS  Google Scholar 

  34. Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N (2022) Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: effect of ether-oxygen atom insertion on the final properties. Chemosphere 291:132996

    Article  PubMed  CAS  Google Scholar 

  35. Tian Y, Hu H, Chen C, Li F, Bin Ying W, Zheng L, Wang J, Zhang R, Zhu J (2022) Enhanced seawater degradation through copolymerization with diglycolic acid: synthesis, microstructure, degradation mechanism and modification for antibacterial packaging. Chem Eng J 447:137535

    Article  CAS  Google Scholar 

  36. Chen X-R, Chen W, Guixiang Z, Huang F-T, Zhang J (2007) Synthesis, 1H-NMR characterization, and biodegradation behavior of aliphatic–aromatic random copolyester. J Appl Polym Sci 104:2643–2649

    Article  CAS  Google Scholar 

  37. Ming M, Zhou Y, Wang L, Zhou F, Zhang Y (2022) Effect of polycarbodiimide on the structure and mechanical properties of PLA/PBAT blends. J Polym Res 29(9):371

    Article  CAS  Google Scholar 

  38. Long Y, Zhang R, Huang J, Wang J, Jiang Y, Hu G-H, Yang J, Zhu J (2017) Tensile property balanced and gas barrier improved poly(lactic acid) by blending with biobased poly(butylene 2,5-furan dicarboxylate). Acs Sustain Chem Eng 5(10):9244–9253

    Article  CAS  Google Scholar 

  39. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199–207

    Article  Google Scholar 

  40. He L, Song F, Li D-F, Zhao X, Wang X-L, Wang Y-Z (2020) Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. Acs Sustain Chem Eng 8(3):1573–1582

    Article  CAS  Google Scholar 

  41. Han CD, Chuang H-K (1985) Criteria for rheological compatibility of polymer blends. J Appl Polym Sci 30:4431–4454

    Article  CAS  Google Scholar 

  42. Han CD, Jhon MS (1986) Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. J Appl Polym Sci 32:3809–3840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wu, Y. Polylactic acid/poly(butylene diglycolate-co-butylene terephthalate) blends with improved toughness. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05198-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05198-w

Keywords

Navigation