Skip to main content
Log in

Toward the reuse of styrene–butadiene (SBRr) waste from the shoes industry: production and compatibilization of BioPE/SBRr blends

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The postconsumer waste of vulcanized styrene–butadiene rubber (SBRr) is a raw material rich in additives with potential reuse in the plastics processing industry. The present investigation evaluated the effectiveness of styrene–ethylene/butylene–styrene copolymer (SEBS) in the compatibilization of biopolyethylene (BioPE)/SBRr blends. The blends were processed in a twin-screw extruder and injection molded to evaluate the melt flow index (MFI), impact strength, tensile strength, Shore D hardness, thermogravimetry (TG), differential scanning calorimetry (DSC), and heat deflection temperature (HDT). Morphology was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The BioPE/SBRr/SEBS blend (70/20/10 wt%) showed the lowest MFI, which indicates a higher viscosity and, consequently, higher compatibility that led to increments of 120% and 698.6% on impact strength and elongation at break, respectively, compared to the noncompatibilized system. The reduction in elastic modulus, tensile strength, and Shore D hardness confirmed the increased flexibility of the BioPE/SBRr/SEBS blends. Melting and crystallization properties of the polymer blends were comparable to the BioPE matrix, suggesting that 20 wt% SBRr content did not severely deteriorate the thermal behavior. SEM analysis showed that SEBS induced a morphology with extensive plastic deformation, confirming the high impact strength and elongation at break. BioPE/SBRr blends compatibilized with SEBS offer significant technological potential, indicating that SBRr can be introduced into the productive chain and contribute to sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ramarad S, Ratnam CT, Munusamy Y, Rahim NAA, Muniyadi M (2021) Thermochemical compatibilization of reclaimed tire rubber/poly(ethylene-co-vinyl acetate) blend using electron beam irradiation and amine-based chemical. J Polym Res 28:389. https://doi.org/10.1007/s10965-021-02748-y

    Article  CAS  Google Scholar 

  2. Xiao Q, Cao C, Xiao L, Bai L, Cheng H, Lei D, Sun X, Zung L, Huang B, Qian Q, Chen Q (2022) Selective decomposition of waste rubber from the shoe industry by the combination of thermal process and mechanical grinding. Polymers 14:1057. https://doi.org/10.3390/polym14051057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elnaggar MY, Fathy ES, Okasha R (2022) Characters alteration of SBR via compounding with ultrasonically and mechanochemically devulcanized rubber influenced by gamma irradiation in presence of polyester fibers. Polym Bull 79:9859–9880. https://doi.org/10.1007/s00289-021-03981-7

    Article  CAS  Google Scholar 

  4. Wisniewska P, Haponiuk JT, Colom X, Saeb MR (2023) Green approaches in rubber recycling technologies: present status and future perspective. ACS Sustain Chem Eng 11:8706–8726. https://doi.org/10.1021/acssuschemeng.3c01314

    Article  CAS  Google Scholar 

  5. Nogueria JAS, Luna CBB, Medeiros VN, Wellen RMR, Melo JBCA, Araújo EM (2023) Do descarte ao reaproveitamento do resíduo de estireno-butadieno (SBRr): produção de compostos de PA6/SBRr compatibilizados com SEBS-MA e reforçados com argila montmorilonita. R. G. Secr., GESEC 14:8452–8474. https://doi.org/10.7769/gesec.v14i5.2221

    Article  Google Scholar 

  6. Valentini F, Dorigato A, Rigotti D, Pegoretti A (2021) Evaluation of the role of devulcanized rubber on the thermomechanical properties of expanded ethylene-propylene diene monomers composites. Polym Eng Sci 61:767–779. https://doi.org/10.1002/pen.25615

    Article  CAS  Google Scholar 

  7. Chittella H, Yoon LW, Ramarad S, Lai ZW (2021) Rubber waste management: a review on methods, mechanism, and prospects. Polym Degrad Stab 194:109761. https://doi.org/10.1016/j.polymdegradstab.2021.109761

    Article  CAS  Google Scholar 

  8. Rosales C, Hocine NA, Bernal C, Pettarin V (2023) Toughness improvement of LLDPE/PP blend by incorporation of GTR waste. Polym Bull. https://doi.org/10.1007/s00289-023-05027-6

    Article  Google Scholar 

  9. Pirityi DZ, Poloskei K (2021) Thermomechanical devulcanisation of ethylene propylene diene monomer (EPDM) rubber and its subsequent reintegration into virgin rubber. Polymers 13:1116. https://doi.org/10.3390/polym13071116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pirityi DZ, Poloskei K (2021) Thermomechanical devulcanization of ethylene propylene diene monomer rubber and its application in blends with high-density polyethylene. J Appl Polym Sci 138:50090. https://doi.org/10.1002/app.50090

    Article  CAS  Google Scholar 

  11. Jovicic M, Bera O, Stojanov S, Pavlicevic J, Govedarica D, Bobinac I, Hollo BB (2023) Effects of recycled carbon black generated from waste rubber on the curing process and properties of new natural rubber composites. Polym Bull 80:5047–5069. https://doi.org/10.1007/s00289-022-04307-x

    Article  CAS  Google Scholar 

  12. Belblidia F, Gabr MH, Pittaman JFT, Rajkumar A (2023) Recycling high impact polystyrene: material properties and reprocessing in a circular economy business model. Prog Rubber Plast Recycl 39:343–363. https://doi.org/10.1177/14777606231168653

    Article  Google Scholar 

  13. Zitzumbo R, Alonso S, Monje AE, Becerra MB, Avalos F, Torres LM (2023) Mechanical properties, dynamic mechanical analysis and molecular cross-linking of GTR/NR re-Vulcanized blends. Prog Rubber Plast Recycl 38:280–294. https://doi.org/10.1177/14777606221127370

    Article  Google Scholar 

  14. Luna CBB, Silva FS, Ferreira ESB, Silva AL, Wellen RMR, Araújo EM (2023) Transforming vulcanized styrene–butadiene waste into valuable raw material: an opportunity for high-impact polypropylene production. Polym Bull. https://doi.org/10.1007/s00289-023-04729-1

    Article  Google Scholar 

  15. Jacobs C, Soulliere K, Beaulieu SS, Sabzwari A, Tam E (2022) Challenges to the circular economy: recovering wastes from simple versus complex products. Sustainability 14:2576. https://doi.org/10.3390/su14052576

    Article  Google Scholar 

  16. Laoutid F, Lafqir S, Toncheva A, Dubbois P (2021) Valorization of recycled tire rubber for 3D printing of ABS- and TPO-based composites. Materials 14:5889. https://doi.org/10.3390/ma14195889

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anyszka R, Bielinski DM, Sicinski M, Gozdek T, Okraska M, Chudzik J, Imiela M, Wreczycki J, Peitrzak D, Gralewski J, Maciejewska M (2023) Improving adhesion between acrylonitrile-butadiene (NBR) rubber and glass fiber cord by covalent bonding and secondary polar interactions. Polym Bull 80:3197–3226. https://doi.org/10.1007/s00289-022-04198-y

    Article  CAS  Google Scholar 

  18. Han Q, Liu W, Xu Y, Cao Z, Chen Y (2023) Fabrication of EPDM/LDPE shape memory composites: the effect of vulcanization and crystals. Polym Bull. https://doi.org/10.1007/s00289-023-04808-3

    Article  Google Scholar 

  19. Entezam M, Zarei I, Khonakdar HA (2022) Effect of accelerator solubility on the curing characteristics and physico-mechanical properties of SBR/NBR blends: correlation with feeding sequence and blend composition. Polym Bull 79:1501–1519. https://doi.org/10.1007/s00289-021-03576-2

    Article  CAS  Google Scholar 

  20. Gonzaga HG, Morais CRS, Cunha CTC (2022) Incorporation of SBR-r rubber waste into PVC/carbonate systems. Rev Mater (Rio J) 27:e20220124. https://doi.org/10.1590/1517-7076-RMAT-2022-0124

    Article  CAS  Google Scholar 

  21. Gumede JI, Hlangothi BG, Woolard C, Hlangothi SP (2022) Organic chemical devulcanization of rubber vulcanizates in supercritical carbon dioxide and associated less eco-unfriendly approaches: a review. Waste Manag Res 40:490–503. https://doi.org/10.1177/0734242X211008515

    Article  CAS  PubMed  Google Scholar 

  22. Weber T, Zanchet A, Crespo JS, Oliveira MG, Suarez JCM, Nunes RCR (2011) Characterization of elastomeric artifacts obtained by revulcanization of SBR industrial waste (Styrene-butadiene Rubber). Polímeros 21:429–435. https://doi.org/10.1590/S0104-14282011005000066

    Article  CAS  Google Scholar 

  23. Xiao Z, Pramanik A, Basak AK, Prakash C, Shankar S (2022) Material recovery and recycling of waste tyres-a review. Clean Mater 5:10011. https://doi.org/10.1016/j.clema.2022.100115

    Article  CAS  Google Scholar 

  24. Phiri MM, Phiri MJ, Formela K, Hlangothi SP (2021) Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development—a review. Compos B Eng 204:108429. https://doi.org/10.1016/j.compositesb.2020.108429

    Article  CAS  Google Scholar 

  25. Formela K (2021) Sustainable development of waste tires recycling technologies—recent advances, challenges and future trends. Adv Ind Eng Polym Res 4:209–222. https://doi.org/10.1016/j.aiepr.2021.06.004

    Article  Google Scholar 

  26. Azhar NNH, Cheng A, Lee SY, Rahman NMM, Ang DTC (2023) Development of natural rubber with enhanced oxidative degradability. Polym Bull 80:3927–3948. https://doi.org/10.1007/s00289-022-04240-z

    Article  CAS  Google Scholar 

  27. Burelo M, Gutiérrez S, Quintanilla CDT, Morales JAC, Martinez A, Morales SL (2022) Synthesis of biobased hydroxyl-terminated oligomers by metathesis degradation of industrial rubbers SBS and PB: tailor-made unsaturated diols and polyols. Polymers 14:4973. https://doi.org/10.3390/polym14224973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Formela K, Kuranska M, Barzzemski M (2022) Recent advances in development of waste-based polymer materials: a review. Polymers 14:1050. https://doi.org/10.3390/polym14051050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Archibong FN, Sanusi OM, Méderic P, Hocine NA (2021) An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: effect of added fillers. Resour Conserv Recycl 175:105894. https://doi.org/10.1016/j.resconrec.2021.105894

    Article  CAS  Google Scholar 

  30. Liang H, Gagné JD, Faye A, Rodrigues D, Brisson J (2020) Ground tire rubber (GTR) surface modification using thiol-ene click reaction: polystyrene grafting to modify a GTR/polystyrene (PS) blend. Prog Rubber Plast Recycl 36:81–101. https://doi.org/10.1177/1477760619895016

    Article  Google Scholar 

  31. Rahmani M, Adamian A, Sianaki AH (2021) Effect of waste ground rubber tire powder on vibrational damping behavior and static mechanical properties of polypropylene composite plates: an experimental investigation. J Mater Eng Perform 30:529–8537. https://doi.org/10.1007/s11665-021-06073-9

    Article  CAS  Google Scholar 

  32. Heller B, Stoger LS, Makó E, Varga C (2022) A practical manner to GTR recycling in waste-HDPE/ABS. J Polym Res 29:329. https://doi.org/10.1007/s10965-022-03167-3

    Article  CAS  Google Scholar 

  33. K, J, Biswal M, Mohanty S, Nayak SK, (2021) Compatibility effect of r-ABS/r-HIPS/r-PS blend recovered from waste keyboard plastics: evaluation of mechanical, thermal and morphological performance. J Polym Res 28:129. https://doi.org/10.1007/s10965-021-02481-6

    Article  CAS  Google Scholar 

  34. Valentini F, Dorigato A, Pegoretti A (2020) Evaluation of the role of devulcanized rubber on the thermo-mechanical properties of polystyrene. J Polym Environ 28:1737–1748. https://doi.org/10.1007/s10924-020-01717-8

    Article  CAS  Google Scholar 

  35. Júnior AJA, Saron C (2023) Mechanical recycling of expanded polystyrene and tire rubber waste as compatibilized and toughened blends. J Appl Polym Sci 140:e54267. https://doi.org/10.1002/app.54267

    Article  CAS  Google Scholar 

  36. Luna CBB, Silva DF, Araújo EM, Mélo TJA, Bezerra EOT, Siqueira DD, Oliveira AD (2019) Blends of polystyrene/shoes waste (SBRr): influence of mixture sequence and compatibilizer. Macromol Symp 383:1800046. https://doi.org/10.1002/masy.201800046

    Article  CAS  Google Scholar 

  37. Basso A, Zhang Y, Linnemann L, Hansen HN (2021) Study of the distribution of rubber particles in ground tire rubber/polypropylene blends. Mater Today Proc 34:311–316. https://doi.org/10.1016/j.matpr.2020.05.362

    Article  CAS  Google Scholar 

  38. Dong H, Zhong J, Isayev A (2021) Manufacturing polypropylene (PP)/waste EPDM thermoplastic elastomers using ultrasonically aided twin-screw extrusion. Polymers 13:259. https://doi.org/10.3390/polym13020259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fazli A, Rodrigues D (2023) Thermoplastic elastomers based on recycled high-density polyethylene/ground tire rubber/ethylene vinyl acetate: effect of ground tire rubber regeneration on morphological and mechanical properties. J Thermoplast Compos Mater 36:2285–2310. https://doi.org/10.1177/08927057221095388

    Article  CAS  PubMed  Google Scholar 

  40. Fazli A, Rodrigues D (2021) Effect of ground tire rubber (GTR) particle size and content on the morphological and mechanical properties of recycled high-density polyethylene (rHDPE)/GTR blends. Recycling 6:44. https://doi.org/10.3390/recycling6030044

    Article  Google Scholar 

  41. Liu S, Peng Z, Zhang Y, Rodrigues D, Wang S (2022) Compatibilized thermoplastic elastomers based on highly filled polyethylene with ground tire rubber. J Appl Polym Sci 139:e52999. https://doi.org/10.1002/app.52999

    Article  CAS  Google Scholar 

  42. Filho EAS, Luna CBB, Ferreira ESB, Siqueira DD, Araújo EM (2023) Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology. J Polym Res 30:132. https://doi.org/10.1007/s10965-023-03504-0

    Article  CAS  Google Scholar 

  43. Gong J, Qiang Z, Ren J (2022) In situ grafting approach for preparing PLA/PHBV degradable blends with improved mechanical properties. Polym Bull 79:9543–9562. https://doi.org/10.1007/s00289-021-03958-6

    Article  CAS  Google Scholar 

  44. Wiphanurat C, Hanthanon P, Quipanich S, Harnkarnsjarit N, Magarapahn R, Nampitch T (2023) Blending HDPE with biodegradable polymers using modified natural rubber as a compatibilizing agent: mechanical, physical, chemical, thermal and morphological properties. Polym Bull 80:11421–11437. https://doi.org/10.1007/s00289-022-04595-3

    Article  CAS  Google Scholar 

  45. Burelo M, Varela JDH, Medina DI, Quintanilla CDT (2023) Recent developments in bio-based polyethylene: degradation studies, waste management and recycling. Heliyon 9:e21374. https://doi.org/10.1016/j.heliyon.2023.e21374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castro DO, Frollini E, Marini J, Filho AR (2013) Preparation and Characterization of Biocomposites Based on Curaua Fibers, High-density Biopolyethylene (HDBPE) and Liquid Hydroxylated Polybutadiene (LHPB). Polímeros 23:65–73. https://doi.org/10.1590/S0104-14282013005000002

    Article  CAS  Google Scholar 

  47. Bezerra EB, França DC, Morais DDS, Silva IDS, Siqueira DD, Araújo EM, Wellen RMR (2019) Compatibility and characterization of Bio-PE/PCL blends. Polímeros 29:e2019022. https://doi.org/10.1590/0104-1428.02518

    Article  Google Scholar 

  48. Garcia PS, Lima JA, Scuracchio CH, Cruz SA (2021) The effect of adding devulcanized rubber on the thermomechanical properties of recycled polypropylene. J Appl Polym Sci 138:50703. https://doi.org/10.1002/app.50703

    Article  CAS  Google Scholar 

  49. Garcia PS, Sousa FDB, Lima JA, Scuracchio CH (2015) Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times. Express Polym Lett 9:1015–1026. https://doi.org/10.3144/expresspolymlett.2015.91

    Article  CAS  Google Scholar 

  50. Tozzi KA, Canto LB, Scuracchio CH (2020) Reclaiming of vulcanized rubber foam waste from the shoe industry through solid-state shear extrusion and compounding with SBR. Macromol Symp 394:2000094. https://doi.org/10.1002/masy.202000094

    Article  CAS  Google Scholar 

  51. Sousa FDB, Zanchet A, Scuracchio CH (2019) From devulcanization to revulcanization: challenges in getting recycled tire rubber for technical applications. ACS Sustain Chem Eng 7:8755–8765. https://doi.org/10.1021/acssuschemeng.9b00655

    Article  CAS  Google Scholar 

  52. Velásquez E, Leal M, García L, Oliva H (2021) Influence of styrene-b-butadiene copolymer types on phase morphology and polymer partitioning between demixed-macrophases from HIPS-mimicking unstable blends. J Polym Res 28:443. https://doi.org/10.1007/s10965-021-02696-7

    Article  CAS  Google Scholar 

  53. Luna CBB, Araújo EM, Siqueira DD, Morais DDS, Filho EAS, Fook MVL (2020) Incorporation of a recycled rubber compound from the shoe industry in polystyrene: effect of SBS compatibilizer contente. J Elastomers Plast 52:3–28. https://doi.org/10.1177/0095244318819213

    Article  CAS  Google Scholar 

  54. Dominici F, García DG, Fombuena V, Luzi F, Puglia D, Torre L, Balart R (2019) Bio-polyethylene-based composites reinforced with alkali and palmitoyl chloride-treated coffee silverskin. Molecules 24:3113. https://doi.org/10.3390/molecules24173113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoffmann R, Morais DDS, Braz CJF, Haag K, Wellen RMR, Canedo EL, Carvalho LH, Koschek K (2019) Impact of the natural filler babassu on the processing and pr. operties of PBAT/PHB films. Compos Part A Appl Sci 124:105472. https://doi.org/10.1016/j.compositesa.2019.105472

    Article  CAS  Google Scholar 

  56. Jaques NG, Silva IDS, Ries A, Canedo EL, Wellen RMR (2018) Nonisothermal crystallization studies of PBT/ZnO compounds. J Therm Anal Calorim 131:2569–2577. https://doi.org/10.1007/s10973-017-6754-x

    Article  CAS  Google Scholar 

  57. Ferreira ESB, Luna CBB, Siqueira DD, Filho EAS, Araújo EM, Wellen RMR (2021) Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends. Sustainability 13:12157. https://doi.org/10.3390/su132112157

    Article  CAS  Google Scholar 

  58. Ciro E, Parra J, Zapata M, Murillo EA (2015) Effect of the recycled rubber on the properties of recycled rubber/recycled polypropylene blends. Ingeniería y Ciencia 11:173–188. https://doi.org/10.17230/ingciencia.11.22.8

    Article  CAS  Google Scholar 

  59. Bilmeyers FW (1984) Textbook of polymer science, 3rd edn. JohnWiley & Sons, New York

    Google Scholar 

  60. Abreu FOMS, Forte MMC, Liberman SA (2005) SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J Appl Polym Sci 95:254–263. https://doi.org/10.1002/app.21263

    Article  CAS  Google Scholar 

  61. Costa HM, Ramos VD, Silva WS, Sirqueira AS (2012) Optimization of mechanical properties of polypropylene (PP)/ethylene-propylene-diene monomer rubber (EPDM)/scrap rubber tire (SRT) ternary mixtures under tensile and impact using the response surface methodology (RSM). Polímeros 22:27–33. https://doi.org/10.1590/S0104-14282012005000009

    Article  Google Scholar 

  62. Lee SH, Balasubramanian M, Kim JK (2007) Dynamic reaction inside co-rotating twin screw extruder. I. Truck tire model material/polypropylene blends. J Appl Polym Sci 106:3193–3208. https://doi.org/10.1002/app.26489

    Article  CAS  Google Scholar 

  63. Koning C, Duin MV, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757. https://doi.org/10.1016/S0079-6700(97)00054-3

    Article  CAS  Google Scholar 

  64. Ferreira RSB, Salviano AF, Oliveira SSL, Araújo EM, Medeiros VN, Lira HL (2019) Treatment of effluents from the textile industry through polyethersulfone membranes. Water 11:2540. https://doi.org/10.3390/w11122540

    Article  CAS  Google Scholar 

  65. Punnarak P, Tantayanon S, Tangpasuthadol V (2006) Dynamic vulcanization of reclaimed tire rubber and high density polyethylene blends. Polym Degrad Stab 91(3456):3462. https://doi.org/10.1016/j.polymdegradstab.2006.01.012

    Article  CAS  Google Scholar 

  66. Ribeiro VF, Júnior NSD, Riegel IC (2012) Recovering properties of recycled HIPS through incorporation of SBS triblock copolymer. Polímeros 22:186–192. https://doi.org/10.1590/S0104-14282012005000023

    Article  CAS  Google Scholar 

  67. Hong CK, Isayev AI (2001) Plastic/rubber blends of ultrasonically devulcanized GRT with HDPE. J Elastomers Plast 33:47–71. https://doi.org/10.1106/5AMQ-XEAY-A05B-P1FY

    Article  CAS  Google Scholar 

  68. Ferreira LAS, Pessan LA, Júnior HA (1997) Comportamento Mecânico e Termo-Mecânico de Blendas Poliméricas PBT/ABS. Polímeros 7:67–72. https://doi.org/10.1590/S0104-14281997000100011

    Article  CAS  Google Scholar 

  69. Luna CBB, Silva Barbosa Ferreira E, Matos Costa AR, Almeida YMB, Melo JBCA, Araújo EM (2023) Toward reactive processing of polyamide 6 based blends with polyethylene grafted with maleic anhydride and acrylic acid: effect of functionalization degree. Macromol React Eng 17:2300031. https://doi.org/10.1002/mren.202300031

    Article  CAS  Google Scholar 

  70. Sousa FDB, Gouveia JR, Filho PMFC, Vidotti SE, Scuracchio CH, Amurin LG, Valera TS (2015) Blends of ground tire rubber devulcanized by microwaves/HDPE—part A: influence of devulcanization process. Polímeros 25:256–264. https://doi.org/10.1590/0104-1428.1747

    Article  CAS  Google Scholar 

  71. Luo T, Isayev AI (1998) Rubber/plastic blends based on devulcanized ground tire rubber. J Elastomers Plast 30:133–160. https://doi.org/10.1177/009524439803000204

    Article  CAS  Google Scholar 

  72. Montagna LS, Bento LS, Silveira MRS, Santana RMC (2013) Evaluation of the effect of the incorporation of rubber tire waste particles on the properties of PP, HIPS and PP/HIPS matrices. Polímeros 23:169–174. https://doi.org/10.4322/polimeros.2013.077

    Article  CAS  Google Scholar 

  73. Zanchet A, Sousa FDB (2020) Elastomeric composites containing SBR industrial scraps devulcanized by microwaves: raw material, not a trash. Recycling 5:3. https://doi.org/10.3390/recycling5010003

    Article  Google Scholar 

  74. Carli LN, Boniatti R, Teixeira CE, Nunes RCR, Crespo JS (2009) Development and characterization of composites with ground elastomeric vulcanized scraps as filler. Mater Sci Eng C 29:383–386. https://doi.org/10.1016/j.msec.2008.07.025

    Article  CAS  Google Scholar 

  75. Kuciel S, Jakubowska P, Kuzniar P (2014) A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos B Eng 64:72–77. https://doi.org/10.1016/j.compositesb.2014.03.026

    Article  CAS  Google Scholar 

  76. Barbalho GHA, Nascimento JJS, Silva L, Silva LB, Gomez RS, Farias DO, Diniz DDS, Santos RS, Figueiredo MJ, Lima AGB (2023) Bio-Polyethylene Composites Based on Sugar Cane and Curauá Fiber: An Experimental Study. Polymers 15:1369. https://doi.org/10.3390/polym15061369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barros ABS, Farias RF, Siqueira DD, Luna CBB, Araújo EM, Rabello MS, Wellen RMR (2020) The effect of ZnO on the failure of PET by environmental Stress cracking. Materials 13:2844. https://doi.org/10.3390/ma13122844

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Almaaded MA, Madi NK, Hodzic A, Soutis C (2014) Influence of additives on recycled polymer blends. J Therm Anal Calorim 115:811–821. https://doi.org/10.1007/s10973-013-3224-y

    Article  CAS  Google Scholar 

  79. Dominici F, Garcia DG, Fombuena V, Luzi F, Puglia D, Torre L, Balart R (2019) Bio-polyethylene-based composites reinforced with alkali and palmitoyl chloride-treated coffee silverskin. Molecules 24:3113. https://doi.org/10.3390/molecules24173113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pistor V, Ornaghi FG, Fiorio R, Zattera AJ, Oliveira PJ, Scuracchio CH (2010) Desvulcanização do Resíduo de Terpolímero de Etileno-Propileno-Dieno (EPDM-r) por Micro-ondas. Polímeros 20:165–169. https://doi.org/10.1590/S0104-14282010005000027

    Article  CAS  Google Scholar 

  81. Massarotto M, Crespo JS, Zattera AJ, Zeni M (2008) Characterization of ground SBR scraps from shoe industry. Mater Res 11:81–84. https://doi.org/10.1590/S1516-14392008000100015

    Article  CAS  Google Scholar 

  82. Baeta DA, Zattera JA, Oliveira MG, Oliveira PJ (2009) The use of styrene-butadiene rubber waste as a potential filler in nitrile rubber: order of addition and size of waste particles. Braz J Chem Eng 26:23–31. https://doi.org/10.1590/S0104-66322009000100003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the National Council for Scientific and Technological Development (CNPq), under process 350025/2023-1 (Carlos Bruno Barreto Luna) and 312014/2020-1 (Edcleide Maria Araújo). At the same time, the authors thank UFCG for the laboratory infrastructure, Kraton Polymers for the copolymer donation, and Alpargatas S.A. for the SBRr donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bruno Barreto Luna.

Ethics declarations

Conflict of interest

There is no conflict of interest, and all authors have agreed with this submission, and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L.M.F., Luna, C.B.B., de Matos Costa, A.R. et al. Toward the reuse of styrene–butadiene (SBRr) waste from the shoes industry: production and compatibilization of BioPE/SBRr blends. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05181-5

Keywords

Navigation