Skip to main content
Log in

Determination of gentamicin by using square wave anodic stripping voltammetry with poly (β-cyclodextrin-p-toluene sulfonic acid) modified glassy carbon electrode

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, an effective electrochemical method based on modified glassy carbon electrode was developed for the determination of gentamicin. Firstly, the poly β-cyclodextrin-p-toluene sulfonic acid/glassy carbon electrode as gentamicin selective electrode was prepared by electropolymerization technique. In situ electropolymerization of β-cyclodextrin and p-toluene sulfonic acid was conducted on bare glassy carbon electrode by controlled potential cycling. Characterization of the prepared poly β-cyclodextrin-p-toluene sulfonic acid/glassy carbon electrode was performed using cyclic voltammetry and electrochemical impedance spectroscopy. Then, the effects of various parameters were investigated using square wave anodic stripping voltammetry in citrate buffer containing 4.0 mmol L−1 gentamicin. The calibration graph plotted over the range of 0.06–4.0 mmol L−1 gentamicin concentration showed high linearity. Correlation coefficient, detection limit and quantitation limit were obtained from the calibration graph as 0.9999, 3.7 µmol L−1 and 12.4 µmol L−1, respectively. According to these results, it is seen that the prepared poly β-cyclodextrin-p-toluene sulfonic acid/glassy carbon electrode can be successfully used for the determination of gentamicin in many pharmacological, medical and biochemical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Schema 1
Schema 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kruger E (2013) Gentamicin: biosynthesis, medicinal applications and potential side effects Nova Biomedical Hauppauge

  2. Mitscher LA, Lemke TL, Gentry EJ (2008) Foye’s principles of medicinal chemistry, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Beake JM, Block JH (2013) Wilson and gisvold’s textbook of organic medicinal and pharmaceutical chemistry, 12th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, Coniglio CT, Charney W, Herzog HL, Black J (1963) Gentamicin, a New Antibiotic Complex from Micromonospora. J Med Chem 6:463–464. https://doi.org/10.1021/jm00340a034

    Article  CAS  PubMed  Google Scholar 

  5. Al-Hamad A (2014) Improving gentamicin dosing: a suggested approach to a simplified once-daily dosing schedule. J Infect Public Health 7:247–248. https://doi.org/10.1016/j.jiph.2013.10.001

    Article  PubMed  Google Scholar 

  6. Yusof FA, Shafri MAM, Yaakob KI, Yusof NM, Mohamed F (2014) Formulation and stability testing of gentamicin-N. Sativa fusion emulsions for osteo-healing application. Int J Pharm Pharm Sci 6:171–176

    CAS  Google Scholar 

  7. Fennell MA, Uboh CE, Sweeney RW, Soma LR (1995) Gentamicin in tissue and whole milk: an improved method for extraction and cleanup of samples for quantitation on HPLC. J Agric Food Chem 43:1849–1852. https://doi.org/10.1021/jf00055a018

    Article  CAS  Google Scholar 

  8. Schenck FJ, Callery PS (1998) Chromatographic methods of analysis of antibiotics in milk. J Chromatogr A 812:99–109. https://doi.org/10.1016/S0021-9673(97)01291-0

    Article  CAS  PubMed  Google Scholar 

  9. Posyniak A, Zmudzki J, Niedzielska J (2001) Sample preparation for residue determination of gentamicin and neomycin by liquid chromatography. J Chromatogr A 914:59–66. https://doi.org/10.1016/S0021-9673(00)00980-8

    Article  CAS  PubMed  Google Scholar 

  10. Clarot I, Chaimbault P, Hasdenteufel F, Netter P, Nicolas A (2004) Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1031:281–287. https://doi.org/10.1016/j.chroma.2003.12.032

    Article  CAS  PubMed  Google Scholar 

  11. Löffler D, Ternes TA (2003) Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography-electrospray-tandem mass spectrometry. J Chromatogr A 1000:583–588. https://doi.org/10.1016/S0021-9673(03)00059-1

    Article  CAS  PubMed  Google Scholar 

  12. Lecároz C, Campanero MA, Gamazo C, Blanco-Prieto MJ (2006) Determination of gentamicin in different matrices by a new sensitive high-performance liquid chromatography-mass spectrometric method. J Antimicrob Chemother 58:557–563. https://doi.org/10.1093/jac/dkl258

    Article  PubMed  Google Scholar 

  13. Barends DM, van der Sandt JSF, Hulshoff A (1980) Micro determination of gentamicin in serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 182:201–210. https://doi.org/10.1016/S0378-4347(00)81624-2

    Article  CAS  Google Scholar 

  14. Vučićevic-Prcetic K, Cservenák R, Radulović N (2011) Development and validation of liquid chromatography tandem mass spectrometry methods for the determination of gentamicin, lincomycin, and spectinomycin in the presence of their impurities in pharmaceutical formulations. J Pharm Biomed Anal 56:736–742. https://doi.org/10.1016/j.jpba.2011.07.031

    Article  CAS  PubMed  Google Scholar 

  15. Al-Amoud AI, Clark BJ, Chrystyn H (2002) Determination of gentamicin in urine samples after inhalation by reversed-phase high-performance liquid chromatography using pre-column derivatisation with o-phthalaldehyde. J Chromatogr B Anal Technol Biomed Life Sci 769:89–95. https://doi.org/10.1016/S1570-0232(01)00636-5

    Article  CAS  Google Scholar 

  16. Joseph A, Rustum A (2010) Development and validation of a RP-HPLC method for the determination of gentamicin sulfate and its related substances in a pharmaceutical cream using a short pentafluorophenyl column and a charged aerosol detector. J Pharm Biomed Anal 51:521–531. https://doi.org/10.1016/j.jpba.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  17. Anibaletto AL, Santos D, Cezimbra da Silva AC, de Lima Feltraco Lizot L, Schneider A, Hahn RZ, Meireles YF, Pagnussat LR, Nonnenmacher JL, Hahn SR, Linden R (2021) Sensitive determination of gentamicin in plasma using ion-exchange solid-phase extraction followed by UHPLC-MS/MS analysis. Pract Lab Med 26:e00246. https://doi.org/10.1016/j.plabm.2021.e00246

    Article  CAS  Google Scholar 

  18. Lucha S, Taibon J, Pongratz S, Geletneky C, Huber E, Wintterle-Roehm C, Lang R, Grimm SH, Duelffer T, Tarasov K, Zander J, Vogeser M, Kobold U (2017) An LC-MS/MS based candidate reference method for the quantification of total gentamicin in human serum and plasma using NMR characterized calibrator material. Clin Chim Acta 464:211–217. https://doi.org/10.1016/j.cca.2016.11.029

    Article  CAS  PubMed  Google Scholar 

  19. Gubernator J, Drulis-Kawa Z, Kozubek A (2006) A simply and sensitive fluorometric method for determination of gentamicin in liposomal suspensions. Int J Pharm 327:104–109. https://doi.org/10.1016/j.ijpharm.2006.07.039

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Wang W, Li M, Zhang L, Cai C, Niu B (2022) On-site, rapid, and facile determination of gentamicin using a fluorescent resonance energy transfer sensor constructed from nitrogen-carbon quantum dots functionalized by 4,5-imidazole dicarboxylic acid. Food Chem 371:131366. https://doi.org/10.1016/j.foodchem.2021.131366

    Article  CAS  PubMed  Google Scholar 

  21. Jin JQ, Ma JQ, Ma CL, Yao MZ, Chen L (2014) Determination of catechin content in representative Chinese tea germplasms. J Agric Food Chem 62:9436–9441. https://doi.org/10.1021/jf5024559

    Article  CAS  PubMed  Google Scholar 

  22. Basan H, Göer NG, Ertaş N, Orbey MT (2001) Quantitative determination of piroxicam in a new formulation (piroxicam-β-cyclodextrin) by derivative UV spectrophotometric method and HPLC. J Pharm Biomed Anal 26:171–178. https://doi.org/10.1016/S0731-7085(01)00383-1

    Article  CAS  PubMed  Google Scholar 

  23. Krzek J, Woltyńska H, Hubicka U (2009) Determination of gentamicin sulphate in injection solutions by derivative spectrophotometry. Anal Lett 42:473–482. https://doi.org/10.1080/00032710802424461

    Article  CAS  Google Scholar 

  24. Ismail AFH, Mohamed F, Rosli LMM, Shafri MAM, Haris MS, Adina AB (2016) Spectrophotometric determination of gentamicin loaded PLGA microparticles and method validation via ninhydrin-gentamicin complex as a rapid quantification approach. J Appl Pharm Sci 6:007–014. https://doi.org/10.7324/JAPS.2016.600102

    Article  CAS  Google Scholar 

  25. Yuan LL, Wei HP, Li SFY (2005) Direct determination of gentamicin components by capillary electrophoresis with potential gradient detection. Electrophoresis 26:196–201. https://doi.org/10.1002/elps.200406121

    Article  CAS  PubMed  Google Scholar 

  26. Kaale E, Long Y, Fonge HA, Govaerts C, Desmet K, Van Schepdael A, Hoogmartens J (2005) Gentamicin assay in human serum by solid-phase extraction and capillary electrophoresis. Electrophoresis 26:640–647. https://doi.org/10.1002/elps.200410012

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Geng Y, Ye N, Xiang Y (2020) A simple and sensitive colorimetric sensor for determination of gentamicin in milk based on lysine functionalized gold nanoparticles. Microchem J 158:105190. https://doi.org/10.1016/j.microc.2020.105190

    Article  CAS  Google Scholar 

  28. Zeng K, Zhang Y, Meng H, Chen B, Wu QY, Yang J, Gu X (2022) Chemiluminescence microarray immunoassay for multiple aminoglycoside antibiotics based on carbon nanotube–assisted signal amplification. Anal Bioanal Chem 414:1819–1828. https://doi.org/10.1007/s00216-021-03809-3

    Article  CAS  PubMed  Google Scholar 

  29. Sravani B, Kiranmai S, Rajasekhara Reddy G, Park JP, VeeraManohara Reddy Y, Madhavi G (2022) Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere 287:132281. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132281

    Article  CAS  PubMed  Google Scholar 

  30. Sun H, Zhao S, Qu F (2012) Gold nanoparticles modified ceria nanoparticles for the oxidation of hydrazine with disposable screen-printed electrode. Meas J Int Meas Confed 45:1111–1113. https://doi.org/10.1016/j.measurement.2012.01.029

    Article  Google Scholar 

  31. Tajik S, Safaei M, Beitollahi H (2019) A sensitive voltammetric sertraline nanosensor based on ZnFe2O4 nanoparticles modified screen printed electrode. Meas J Int Meas Confed 143:51–57. https://doi.org/10.1016/j.measurement.2019.04.057

    Article  Google Scholar 

  32. Alışık F, Burç M, Köytepe S, Titretir Duran S (2020) Preparation of molecularly imprinted electrochemical L-phenylalanine sensor with p-toluene sulfonic acid modified Pt electrode. J Electrochem Soc 167:167508. https://doi.org/10.1149/1945-7111/abcc35

    Article  CAS  Google Scholar 

  33. Topsoy OK, Muhammad F, Kolak S, Ulu A, Güngör Ö, Şimşek M, Köytepe S, Ateş B (2022) Fabrication of electrospun polycaprolactone/chitosan nanofiber-modified screen-printed electrode for highly sensitive detection of diazinon in food analysis. Measurement 187:110250. https://doi.org/10.1016/J.MEASUREMENT.2021.110250

    Article  Google Scholar 

  34. Maleki B, Baghayeri M, Ghanei-Motlagh M, Mohammadi Zonoz F, Amiri A, Hajizadeh F, Hosseinifar AR, Esmaeilnezhad E (2019) Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb 2+ and Cd 2+ ions in environmental waters. Meas J Int Meas Confed 140:81–88. https://doi.org/10.1016/j.measurement.2019.03.052

    Article  Google Scholar 

  35. Bukkitgar SD, Kumar S, Pratibha SS, Singh V, Raghava Reddy K, Sadhu V, Bagihalli GB, Shetti NP, Venkata Reddy C, Ravindranadh K, Naveen S (2020) Functional nanostructured metal oxides and its hybrid electrodes—recent advancements in electrochemical biosensing applications. Microchem J 159:105522. https://doi.org/10.1016/j.microc.2020.105522

    Article  CAS  Google Scholar 

  36. Burç M, Köytepe S, Duran ST, Ayhan N, Aksoy B, Seçkin T (2020) Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol. Measurement 151:107103. https://doi.org/10.1016/j.measurement.2019.107103

    Article  Google Scholar 

  37. Rouhani M, Soleymanpour A (2020) Molecularly imprinted sol-gel electrochemical sensor for sildenafil based on a pencil graphite electrode modified by Preyssler heteropolyacid/gold nanoparticles/MWCNT nanocomposite. Microchim Acta 187:1–16. https://doi.org/10.1007/s00604-020-04482-6

    Article  CAS  Google Scholar 

  38. Kolahi-Ahari S, Deiminiat B, Rounaghi GH (2020) Modification of a pencil graphite electrode with multiwalled carbon nanotubes capped gold nanoparticles for electrochemical determination of tramadol. J Electroanal Chem 862:113996. https://doi.org/10.1016/j.jelechem.2020.113996

    Article  CAS  Google Scholar 

  39. Taşkın İ, Güngör Ö, Titretir Duran S (2021) Voltammetric determination of florfenicol by using poly(3-methylthiophene) modified glassy carbon electrode. Polym Bull 78:4721–4741. https://doi.org/10.1007/s00289-021-03732-8

    Article  CAS  Google Scholar 

  40. Burç M, Güngör Ö, Titretir Duran S (2020) Voltammetric determination of curcumin in spices using platinum electrode electrochemically modified with poly(vanillin-co-caffeic acid). Anal Bioanal Electrochem 12(5):625–643

    Google Scholar 

  41. Titretir S, Erdoğdu G, Karagözler AE (2006) Determination of iodide ions at poly(3-methylthiophene)-modified electrode by differential pulse stripping voltammetry. J Anal Chem 61(6):592–595. https://doi.org/10.1134/S1061934806060141

    Article  CAS  Google Scholar 

  42. Vagin MY, Karyakin AA, Hianik T (2002) Surfactant bilayers for the direct electrochemical detection of affinity interactions. Bioelectrochemistry 56(1–2):91–93. https://doi.org/10.1016/s1567-5394(01)00142-6

    Article  CAS  PubMed  Google Scholar 

  43. Messaoud NB, Dos Santos MB, Trocado V, Nogueira-Silva C, Queiros R (2023) A novel label-free electrochemical immunosensor for detection of surfactant protein B in amniotic fluid. Talanta 251:123744. https://doi.org/10.1016/j.talanta.2022.123744

    Article  CAS  PubMed  Google Scholar 

  44. Titretir Duran S, Ayhan N, Aksoy B, Köytepe S, Paşahan A (2020) Preparation of triaminotriazine-based polyimide-modified electrodes and their use for selective detection of catechin in green tea samples. Polym Bull 77:5065–5082. https://doi.org/10.1007/s00289-019-03005-5

    Article  CAS  Google Scholar 

  45. Güngör Ö, Kılıç B, Seren Karasürmeli T, Özcan İ, Köytepe S (2021) Voltammetric determination of alpha lipoic acid using chitosan-based polyurethane membrane electrode. Meas J Int Meas Confed 182:109752. https://doi.org/10.1016/j.measurement.2021.109752

    Article  Google Scholar 

  46. Uslu B, Ozkan SA (2011) Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Anal Lett 44:2644–2702. https://doi.org/10.1080/00032719.2011.553010

    Article  CAS  Google Scholar 

  47. Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15:22490–22508. https://doi.org/10.3390/s150922490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burç M, Duran ST, Asma D (2021) Development of voltammetric melanin sensor with 2, 5-dimethylfuran modified platinum electrode. Maced J Chem Chem Eng 40:289–297. https://doi.org/10.20450/MJCCE.2021.2399

    Article  Google Scholar 

  49. Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S (2021) Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull 78(8):4699–4719. https://doi.org/10.1007/s00289-021-03605-0

    Article  CAS  Google Scholar 

  50. Aksoy B, Güngör Ö, Köytepe S, Seçkin T (2016) Preparation of novel sensors based on polyimide membrane for sensitive and selective determination of dopamine. Polym-Plast Technol Eng 55(2):119–128. https://doi.org/10.1080/03602559.2015.1055503

    Article  CAS  Google Scholar 

  51. Abt B, Hartmann A, Pasquarelli A, Strehle S, Mizaikoff B, Kranz C (2016) Electrochemical determination of sulphur-containing pharmaceuticals using boron-doped diamond electrodes. Electroanalysis 28:1641–1646. https://doi.org/10.1002/elan.201501150

    Article  CAS  Google Scholar 

  52. Khaled E, Khalil MM, Abed el Aziz GM (2017) Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sens Actuators B Chem 244:876–884. https://doi.org/10.1016/j.snb.2017.01.033

    Article  CAS  Google Scholar 

  53. Khalil MM, Abed El-Aziz GM (2016) Multiwall carbon nanotubes chemically modified carbon paste electrodes for determination of gentamicin sulfate in pharmaceutical preparations and biological fluids. Mater Sci Eng C 59:838–846. https://doi.org/10.1016/j.msec.2015.10.095

    Article  CAS  Google Scholar 

  54. Isoherranen N, Soback S (2000) Determination of gentamicins C1, C1a, and C2 in plasma and urine by HPLC. Clin Chem 46(6):837–842. https://doi.org/10.1093/clinchem/46.6.837

    Article  CAS  PubMed  Google Scholar 

  55. Jariwala FB, Hibbs JA, Zhuk I, Sukhishvili SA, Attygalle AB (2020) Rapid determination of aminoglycosides in pharmaceutical preparations by electrospray ionization mass spectrometry. J Anal Sci Technol 11:2. https://doi.org/10.1186/s40543-019-0202-4

    Article  CAS  Google Scholar 

  56. Jager M, Hartmann M, Vries JG, Minnaard AJ (2013) Catalytic regioselective oxidation of glycosides. Angew Chem Int Ed 52:7809–7812. https://doi.org/10.1002/anie.201301662

    Article  CAS  Google Scholar 

  57. Arhoutane MR, Yahya MS, Karbane ME, Kacemi KE (2019) Oxidative degradation of gentamicin present in water by an electro-Fenton process and biodegradability improvement. Open Chem 17:1017–1025. https://doi.org/10.1515/chem-2019-0110]

    Article  CAS  Google Scholar 

  58. Kidonakis M, Villotet A, Witte MD, Beil SB, Minnaard AJ (2023) Site-selective electrochemical oxidation of glycosides. ACS Catal 13:2335–2340. https://doi.org/10.1021/acscatal.2c06318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kyzas GZ, Lazaridis NK, Bikiaris DN (2013) Optimization of chitosan and beta-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohyd Polym 91(1):198–208. https://doi.org/10.1016/j.carbpol.2012.08.016

    Article  CAS  Google Scholar 

  60. Saleh GA, Askal HF, Refaat IH, Abdel-aal FAM (2015) Adsorptive square wave voltammetric determination of acyclovir and its application in a pharmacokinetic study using a novel sensor of β-cyclodextrin modified pencil graphite electrode. Bull Chem Soc Jpn 88(9):1291–1300. https://doi.org/10.1246/bcsj.20150112

    Article  CAS  Google Scholar 

  61. Issac S, Kumar KG (2010) Voltammetric study of pyridine-2-aldoxime methochloride at poly(p-toluene sulfonic acid) modified glassy carbon sensor and its analytical applications. Anal Methods 2(10):1484–1489. https://doi.org/10.1039/c0ay00351d

    Article  CAS  Google Scholar 

  62. Zhang F, Gu S, Ding Y, Zhang Z, Li L (2013) A novel sensor based on electropolymerization of beta-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones. Anal Chim Acta 770:53–61. https://doi.org/10.1016/j.aca.2013.01.052

    Article  CAS  PubMed  Google Scholar 

  63. Pereira AC, Oliveira AEF, Bettio GB (2019) β-Cyclodextrin electropolymerization: mechanism, electrochemical behavior, and optimization. Chem Pap 73:1795–1804. https://doi.org/10.1007/s11696-019-00732-x

    Article  CAS  Google Scholar 

  64. Burç M, Titretir Duran S, Güngör Ö, Köytepe S (2022) High sensitive voltammetric gentamicin sensor using poly (3-thiophenecarboxylic acid-co-3-methylthiophene) modified glassy carbon electrode. Electroanalysis 34(7):1212–1226. https://doi.org/10.1002/elan.202100630

    Article  CAS  Google Scholar 

  65. Sajwan RK, Solanki PR (2022) A hybrid optical strategy based on graphene quantum dots and gold nanoparticles for selective determination of gentamicin in the milk and egg samples. Food Chem 370:131312. https://doi.org/10.1016/j.foodchem.2021.131312

    Article  CAS  PubMed  Google Scholar 

  66. Sun X, Yang Y, Tian Q, Shang D, Xing J, Zhai Y (2018) Determination of gentamicin C components in fish tissues through SPE-Hypercarb-HPLC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 1093–1094:167–173. https://doi.org/10.1016/j.jchromb.2018.07.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financing of this study is İnönü University Scientific Research Projects Coordination and it was supported by the project numbered FYL-2018-1504. GNS electrochemical reaction mechanism was suggested by Prof. Dr. Ülkü Yılmaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Öznur Güngör.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or personal relationships that could affect the work reported in this article.

Additional information

This article is dedicated to memory of Prof. Dr. O. Yavuz Ataman, a brilliant Turkish scientist working in Analytical Chemistry, who passed away on August 15, 2020.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burç, M., Titretir Duran, S., Güngör, Ö. et al. Determination of gentamicin by using square wave anodic stripping voltammetry with poly (β-cyclodextrin-p-toluene sulfonic acid) modified glassy carbon electrode. Polym. Bull. 81, 6381–6403 (2024). https://doi.org/10.1007/s00289-023-05011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05011-0

Keywords

Navigation