Skip to main content

Advertisement

Log in

High-sensitivity electrochemical sensor using no nanomaterials for the detection of ciprofloxacin with poly 2-(hydroxymethyl)thiophene-modified glassy carbon electrode

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, a new sensor was developed for the detection of ciprofloxacin that is easy to prepare, selective and has excellent sensitivity through electrochemical polymerization of 2-(hydroxymethyl)thiophene on glassy carbon (GC) electrode. Electrode modifications were performed by using cyclic voltammetry. The morphology and surface properties of the modified electrode were characterized by using scanning electron microscopy. Determination of ciprofloxacin with poly 2-(hydroxymethyl)thiophene-modified GC electrode was performed by square wave voltammetry in 0.1 M citrate buffer (pH 5.00) at 1.1 V. The prepared sensor showed a wide linear range from 0.1 to 200 µM, detection limit of 7 nM, a limit of quantitation of 22 nM, a correlation coefficient of 0.9993, excellent sensitivity of 99.6% and a relative standard deviation of 0.40%. The sensor was used to determine ciprofloxacin in human urine samples, and a recovery efficiency of 99.24–100.36% was obtained. According to the results in this study, we believe that the sensor developed can be used for the detection of ciprofloxacin in clinical laboratories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fang X, Chen X, Liu Y, Li Q, Zeng Z, Maiyalagan T, Mao S (2019) Nanocomposites of Zr(IV)-based metal-organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Appl Nano Mater 2:2367–2376. https://doi.org/10.1021/acsanm.9b00243

    Article  CAS  Google Scholar 

  2. Cinková K, Andrejčáková D, Švorc Ľ (2016) Electrochemical method for point-of-care determination of ciprofloxacin using boron-doped diamond electrode. Acta Chim Slov 9:146–151. https://doi.org/10.1515/acs-2016-0025

    Article  CAS  Google Scholar 

  3. Zhang X, Wei Y, Ding Y (2014) Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Anal Chim Acta 835:29–36. https://doi.org/10.1016/j.aca.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  4. Oyebanji B (2018) Use of antibiotics and knowledge of antibiotics resistance by selected farmers in Oyo Town, Nigeria. Uganda J Agric Sci 18:43–56. https://doi.org/10.4314/ujas.v18i1.4

    Article  Google Scholar 

  5. Shinko EI, Farafonova OV, Shanin IA, Eremin SA, Ermolaeva TN (2021) Determination of the fluoroquinolones levofloxacin and ciprofloxacin by a piezoelectric immunosensor modified with multiwalled carbon nanotubes (MWCNTs). Anal Lett 55(7):1164–1177. https://doi.org/10.1080/00032719.2021.1991364

    Article  CAS  Google Scholar 

  6. Matsunaga T, Kondo T, Osasa T, Kotsugai A, Shitanda I, Hoshi Y, Itagaki M, Aikawa T, Tojo T, Yuasa M (2020) Sensitive electrochemical detection of ciprofloxacin at screen-printed diamond electrodes. Carbon 159:247–254. https://doi.org/10.1016/j.carbon.2019.12.051

    Article  CAS  Google Scholar 

  7. Cazedey E, Salgado H (2012) Spectrophotometric determination of ciprofloxacin hydrochloride in ophthalmic solution. Adv Anal Chem 2:74–79. https://doi.org/10.5923/j.aac.20120206.01

    Article  Google Scholar 

  8. Cao L, Li Z, Jia R, Chen L, Wu Y, Di J (2020) Sensitive photoelectrochemical determination of ciprofloxacin using an indium tin oxide photoelectrode modified with small gold nanoparticles. Anal Lett 53:1472–1488. https://doi.org/10.1080/00032719.2019.1709481

    Article  CAS  Google Scholar 

  9. Okoli CC, Ngwai YB (2020) Plasmid-mediated quinolone resistance genes associated with ciprofloxacin resistance in salmonella typhimurium from cattle faeces from abattoir in Keffi, Nasarawa State, Nigeria. Int J Sci Res Publ 10(7):395–409. https://doi.org/10.29322/IJSRP.10.07.2020.p10346

    Article  Google Scholar 

  10. Sun HW, Li LQ, Chen XY (2006) Flow-injection enhanced chemiluminescence method for determination of ciprofloxacin in pharmaceutical preparations and biological fluids. Anal Bioanal Chem 384:1314–1319. https://doi.org/10.1007/s00216-005-0277-1

    Article  CAS  PubMed  Google Scholar 

  11. Hernández P, Aguilar-Lira GY, Islas G, Rodriguez JA (2021) Development of a new voltammetric methodology for the determination of ciprofloxacin in beef samples using a carbon paste electrode modified with nafion and fullerenes. Electroanalysis 33:1539–1546. https://doi.org/10.1002/elan.202060525

    Article  CAS  Google Scholar 

  12. Sagirli O, Demirci S, Önal A (2016) Determination of ciprofloxacin in human serum by online heart-cutting liquid chromatography. Chromatographia 79:137–144. https://doi.org/10.1007/s10337-015-3013-9

    Article  CAS  Google Scholar 

  13. Vella J, Busuttil F, Bartolo NS, Sammut C, Ferrito V, Serracino-Inglott A, Azzopardi LM, LaFerla G (2015) A simple HPLC–UV method for the determination of ciprofloxacin in human plasma. J Chromatogr B 989:80–85. https://doi.org/10.1016/j.jchromb.2015.01.006

    Article  CAS  Google Scholar 

  14. Brito JCM, Bernardoni V, da Silva TML, Ramos LSXS, Gomes MP, de Assis DCS (2022) Development and validation of a rapid and reliable HPLC–FLD method for the quantification of ciprofloxacin and enrofloxacin residues in Zea mays. J Braz Chem Soc 33(2):128–134. https://doi.org/10.21577/0103-5053.20210129

    Article  CAS  Google Scholar 

  15. Sasongko L, Pratiwi GK, Leo M, Adiwidjaja J (2021) Simultaneous HPLC Assay of Gliclazide and Ciprofloxacin in Plasma and its Implementation for Pharmacokinetic Study in Rats. J Chromatogr Sci 59(4):338–346. https://doi.org/10.1093/chromsci/bmaa111

    Article  CAS  PubMed  Google Scholar 

  16. Rao Nadendla R, Morla SP, Patchala A, Pinnamaneni P (2021) A novel synchronic estimstion of metronidazole, ciprofloxacin and doxycycline by RP–HPLC in bulk and pharmaceutical formulation. J Pharm Res Int 33:354–362

    Article  Google Scholar 

  17. Espinosa-Mansilla A, Muñoz de la Peña A, González Gómez D, Cañada-Cañada F (2006) HPLC determination of ciprofloxacin, cloxacillin, and ibuprofen drugs in human urine samples. J Sep Sci 29:1969–1976. https://doi.org/10.1002/jssc.200600126

    Article  CAS  PubMed  Google Scholar 

  18. Obaydo RH, Sakur AA (2019) Fingerprint spectrophotometric methods for the determination of co-formulated otic solution of ciprofloxacin and fluocinolone acetonide in their challengeable ratio. J Anal Methods Chem. https://doi.org/10.1155/2019/8919345

    Article  PubMed Central  PubMed  Google Scholar 

  19. Taghizade M, Ebrahimi M, Fooladi E, Yoosefian M (2021) Simultaneous spectrophotometric determination of the residual of ciprofloxacin, famotidine, and tramadol using magnetic solid phase extraction coupled with multivariate calibration methods. Microchem J Part A 160:105627. https://doi.org/10.1016/j.microc.2020.105627

    Article  CAS  Google Scholar 

  20. Li F, Wang M, Zhou J, Yang MR, Wang TT (2021) Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC–MS/MS determination. Microchem J 164:105955. https://doi.org/10.1016/j.microc.2021.105955

    Article  CAS  Google Scholar 

  21. Michalska K, Pajchel G, Tyski S (2004) Determination of ciprofloxacin and its impurities by capillary zone electrophoresis. J Chromatogr A 1051(1–2):267–272. https://doi.org/10.1016/j.chroma.2004.04.048

    Article  CAS  PubMed  Google Scholar 

  22. Faria AF, de Souza MVN, de Oliveira MAL (2008) Validation of a capillary zone electrophoresis method for the determination of ciprofloxacin, gatifloxacin, moxifloxacin and ofloxacin in pharmaceutical formulations. J Braz Chem Soc 19(3):389–396. https://doi.org/10.1590/S0103-50532008000300004

    Article  CAS  Google Scholar 

  23. Li Z, Cui Z, Tang Y, Liu X, Zhang X, Liu B, Wang X, Draz MS, Gao X (2019) Fluorometric determination of ciprofloxacin using molecularly imprinted polymer and polystyrene microparticles doped with europium(III)(DBM)3phen. Microchim Acta 186:334. https://doi.org/10.1007/s00604-019-3448-z

    Article  CAS  Google Scholar 

  24. Madrakian T, Maleki S, Afkhami A (2017) Surface decoration of cadmium–sulfide quantum dots with 3-mercaptopropionic acid as a fluorescence probe for determination of ciprofloxacin in real samples. Sens Actuators B Chem 243:14–21. https://doi.org/10.1016/j.snb.2016.11.106

    Article  CAS  Google Scholar 

  25. Alışık F, Burç M, Köytepe S, Titretir Duran S (2020) Preparation of molecularly imprinted electrochemical L-phenylalanine sensor with p-toluene sulfonic acid modified Pt electrode. J Electrochem Soc 167(16):167508

    Article  Google Scholar 

  26. Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S (2021) Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull 78:4699–4719. https://doi.org/10.1007/s00289-021-03605-0

    Article  CAS  Google Scholar 

  27. Ben Ali Hassine C, Güngör Ö, Burç M, Özcan İ, Köytepe S, Titretir Duran S (2021) Electrochemical determination of ceftriaxone using polyurethane-modified electrode containing caffeic acid and chitosan. Polym Plast Technol Mater 61(6):609–623. https://doi.org/10.1080/25740881.2021.2005092

    Article  CAS  Google Scholar 

  28. Burç M, Köytepe S, Titretir Duran S, Ayhan N, Aksoy B, Seçkin T (2020) Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol. Measurement 151:107103. https://doi.org/10.1016/j.measurement.2019.107103

    Article  Google Scholar 

  29. Burç M, Titretir Duran S, Güngör Ö, Köytepe S (2022) High sensitive voltammetric gentamicin sensor using poly (3-thiophenecarboxylic acid-co-3-methylthiophene) modified glassy carbon electrode. Electroanalysis 34(7):1065–1236. https://doi.org/10.1002/elan.202100630

    Article  CAS  Google Scholar 

  30. Adam V, Mikelova R, Hubalek J, Hanustiak P, Beklova M, Hodek P, Horna A, Trnkova L, Stiborova M, Zeman L, Kizek R (2007) Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors 7(10):2402–2418. https://doi.org/10.3390/s7102402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Güngör Ö, Burç M, Ben Ali Hassine C, Köytepe S, Titretir Duran S (2022) A new voltammetric sensor for penicillin G using poly(3-methylthiophene)-citric acid modified glassy carbon electrode. Diam Relat Mater 128:109240. https://doi.org/10.1016/j.diamond.2022.109240

    Article  CAS  Google Scholar 

  32. Titretir Duran S, Ayhan N, Aksoy B, Köytepe S, Paşahan A (2020) Preparation of triaminotriazine-based polyimide-modifed electrodes and their use for selective detection of catechin in green tea samples. Polym Bull 77:5065–5082. https://doi.org/10.1007/s00289-019-03005-5

    Article  CAS  Google Scholar 

  33. Titretir Duran S, Ben Ali Hassine C, Burç M, Güngör Ö (2020) Voltammetric determination of α-lipoic acid using poly(vanillin) modified platinum electrode. Anal Bioanal Electrochem 12(6):857–869

    Google Scholar 

  34. Sravani B, Kiranmai S, Rajasekhara Reddy G, Park JP, VeeraManohara Reddy Y, Madhavi G (2022) Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere 287(3):132281. https://doi.org/10.1016/j.chemosphere.2021.132281

    Article  CAS  PubMed  Google Scholar 

  35. Jalal NR, Madrakian T, Afkhami A, Ghamsari M (2019) Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples. J Electroanal Chem 833:281–289. https://doi.org/10.1016/j.jelechem.2018.12.004

    Article  CAS  Google Scholar 

  36. Chaudhary N, Verma D, Gopal Sharma J, Solanki PR (2022) A novel bioinspired carbon quantum dots based optical sensor for ciprofloxacin detection. Materials Letters, Part A 308:131090. https://doi.org/10.1016/j.matlet.2021.131090

    Article  CAS  Google Scholar 

  37. Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399. https://doi.org/10.1016/j.biomaterials.2008.04.047

    Article  CAS  PubMed  Google Scholar 

  38. Wang HS, Li TH, Jia WL, Xu HY (2006) Highly selective and sensitive determination of dopamine using a nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens Bioelectron 22(5):664–669. https://doi.org/10.1016/j.bios.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  39. Gmucová K (2022) Fundamental aspects of organic conductive polymers as electrodes. Curr Opin Electrochem 36:101117. https://doi.org/10.1016/j.coelec.2022.101117

    Article  CAS  Google Scholar 

  40. Poddar AK, Patel SS, Patel HD (2021) Synthesis, characterization and applications of conductive, polymers: a brief review. Polym Adv Technol 32:4616–4641

    Article  CAS  Google Scholar 

  41. Chauhan R, Gill AAS, Nate Z, Karpoormath R (2020) Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly(phenol red) modified glassy carbon electrode. J Electroanal Chem 871:114254. https://doi.org/10.1016/j.jelechem.2020.114254

    Article  CAS  Google Scholar 

  42. Garrido JMPJ, Melle-Franco M, Strutyński K, Borges F, Brett CMA, Garrido EMPJ (2016) β–Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J Environ Sci Health Part A 52(4):313–319. https://doi.org/10.1080/10934529.2016.1258864

    Article  CAS  Google Scholar 

  43. Hareesha N, Manjunatha JG (2019) Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin. Mater Res Innov 24(6):349–362. https://doi.org/10.1080/14328917.2019.1684657

    Article  CAS  Google Scholar 

  44. Radičová M, Behúl M, Marton M, Vojs M, Bodor R, Redhammer R, Vojs Staňová A (2017) Heavily boron doped diamond electrodes for ultra sensitive determination of ciprofloxacin in human urine. Electroanalysis 29(6):1612–1617. https://doi.org/10.1002/elan.201600769

    Article  CAS  Google Scholar 

  45. Zhao G, Zou G, Hou H, Ge P, Caob X, Ji X (2017) Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behaviour. J Mater Chem A 5:24353–24360. https://doi.org/10.1039/c7ta07860a

    Article  CAS  Google Scholar 

  46. Lu Y, He C, Gao P, Qiu S, Han X, Shi D, Zhang A, Yang Y (2017) Simultaneous polymerization enabled the facile fabrication of S-doped carbons with tunable mesoporosity for high-capacitance supercapacitors. J Mater Chem A 5:23513–23522. https://doi.org/10.1039/C7TA08663F]

    Article  CAS  Google Scholar 

  47. Bagheri H, Khoshsafar H, Amidi S, Hosseinzadeh Ardakani Y (2016) Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin. Anal Methods 8:3383–3390. https://doi.org/10.1039/c5ay03410h

    Article  CAS  Google Scholar 

  48. Hosseini A, Sohouli E, Gholami M, Sobhani-Nasab A, Mirhosseini SA (2019) Electrochemical determination of ciprofloxacin using glassy carbon electrode modified with CoFe2O4-MWCNT. Anal Bioanal Electrochem 11:996–1008

    CAS  Google Scholar 

  49. Stefano JS, Cordeiro DS, Marra MC, Richter EM, Munoz RAA (2016) Batch-injection versus flow-injection analysis using screen-printed electrodes: determination of ciprofloxacin in pharmaceutical formulations. Electroanalysis 28(2):350–357. https://doi.org/10.1002/elan.201500325

    Article  CAS  Google Scholar 

  50. Abdel-Haleem FM, Rizk MS, Badr IHA (2017) Potentiometric determination of ciprofloxacin in physiological fluids using carbon paste and nano-composite carbon paste electrodes. Electroanalysis 29(4):1172–1179. https://doi.org/10.1002/elan.201600735

    Article  CAS  Google Scholar 

  51. Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264. https://doi.org/10.1016/j.bios.2016.08.047

    Article  CAS  PubMed  Google Scholar 

  52. Shan J, Liu Y, Li R, Wu C, Zhu L, Zhang J (2015) Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. J Electroanal Chem 738:123–129. https://doi.org/10.1016/j.jelechem.2014.11.031

    Article  CAS  Google Scholar 

  53. Montes RHO, Marra MC, Rodrigues MM, Richter EM, Muñoz RAA (2014) Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electroanalysis 26(2):432–438. https://doi.org/10.1002/elan.201300474

    Article  CAS  Google Scholar 

  54. Torriero AAJ, Salinas E, Raba J, Silber JJ (2006) Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosens Bioelectron 22:109–115. https://doi.org/10.1016/j.bios.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  55. Burç M (2020) (Master’s thesis) Development of selective electrodes for ciprofloxacin and gentamicin antibiotics. Inonu University

  56. Ziyatdinova G, Labuda J (2011) Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Anal Methods 3:2777–2782

    Article  CAS  Google Scholar 

  57. Sochor J, Dobes J, Krystofova O, Ruttkay-Nedecky B, Babula P, Pohanka M, Jurikova T, Zitka O, Adam V, Klejdus B, Kizek R (2013) Electrochemistry as a tool for studying antioxidant properties. Int J Electrochem Sci 8:8464–8489

    Article  CAS  Google Scholar 

  58. Chen A, Shah B (2013) Electrochemical sensing and biosensing based on square wave voltammetry. Anal Methods 5:2158–2173. https://doi.org/10.1039/c3ay40155c

    Article  CAS  Google Scholar 

  59. Pilehvar S, Dardenne F, Blust R, De Wael K (2012) Electrochemical sensing of phenicol antibiotics at gold. Int J Electrochem Sci 7(6):5000–5011

    Article  CAS  Google Scholar 

  60. Nikodimos Y, Hagos B (2017) Electrochemical behaviour of tinidazole at 1,4-benzoquinone modified carbon paste electrode and its direct determination in pharmaceutical tablets and urine by differential pulse voltammetry. J Anal Methods Chem. https://doi.org/10.1155/2017/8518707

    Article  PubMed Central  PubMed  Google Scholar 

  61. Fotouhi L, Alahyari M (2010) Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids Surf B 81(1):110–114. https://doi.org/10.1016/j.colsurfb.2010.06.030

    Article  CAS  Google Scholar 

  62. de Faria LV, Lisboa TP, Alves GF, de Farias DM, Matos MAC, Muñoz RAA, Matos RC (2020) Electrochemical study of different sensors for simple and fast quantification of ciprofloxacin in pharmaceutical formulations and bovine milk. Electroanalysis 32(10):2266–2272. https://doi.org/10.1002/elan.202060211

    Article  CAS  Google Scholar 

  63. Alves GF, Lisbo TP, de Faria LV, de Farias DM, Matos MAC, Matos RC (2021) Disposable pencil graphite electrode for ciprofloxacin determination in pharmaceutical formulations by square wave voltammetry. Electroanalysis 33(2):543–549. https://doi.org/10.1002/elan.202060432

    Article  CAS  Google Scholar 

  64. Shan J, Li R, Yan K, Zhu Y, Zhang J (2016) In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin. Sens Actuators B Chem 237:75–80. https://doi.org/10.1016/j.snb.2016.06.066

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported financially by İnönü University Scientific Research Projects Coordination Unit with the project numbered FYL-2018-1504. We thank Andrea Holck Karagözler for her help in editing the grammar and spelling errors of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Titretir Duran.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or personal relationships that could affect the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burç, M., Güngör, Ö. & Titretir Duran, S. High-sensitivity electrochemical sensor using no nanomaterials for the detection of ciprofloxacin with poly 2-(hydroxymethyl)thiophene-modified glassy carbon electrode. Polym. Bull. 81, 6283–6310 (2024). https://doi.org/10.1007/s00289-023-04995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04995-z

Keywords

Navigation