Skip to main content
Log in

Lavender officinalis essential oil conjugated carboxymethyl cellulose: as boosters of antibacterial and bio enhancers to accelerate the repair of full-thickness infected wound

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biodegradable polymers can be utilized for coating plant derivations and help to preserve their medicinal properties, such as carboxymethyl cellulose (CMC). This study was conducted to investigate the wound healing activity of nanoemulsions (NEs) of Lavender officinalis essential oil (LOEO)/CMC in an infected mice model. Physicochemical properties of the NEs of LOEO and LOEO-NES/CMC-ONT were investigated. The NEs were blended with base formulations and administrated on infected wounds. Wound contraction, histopathological parameters, the expressions of CD31 and VEGF (Vascular endothelial growth factor), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), smooth muscle alpha-actin (αSMA), transforming growth factor-β (TGF-β) and fibroblast growth factor-2 (FGF-2) were investigated. The results confirmed the successful synthesis and safety of the NEs. In addition, CMC helped to slow release and in a longer time of LOEO. Antibacterial activity of NEs and their ointment was confirmed. The results also showed that the administration of ointments prepared from LOEO-NEs/CMC and LOEO-NEs could increase the expression of CD31, VEGF, αSMA, TGF-β, FGF-2, and decrease TNF-α and IL-6 compared with mice treated with base formulations (p = 0.0001). Ointments prepared from LOEO-NEs/CMC and LOEO-NEs accelerate wound healing via promoting the proliferative phase and especially via factors involved in angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou C, Yang Z, Xun X, Ma L, Chen Z, Hu X et al (2022) De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioact Mater 13:212–222

    CAS  PubMed  Google Scholar 

  2. Kucinska-Lipka J, Gubanska I, Lewandowska A, Terebieniec A, Przybytek A, Cieśliński H (2019) Antibacterial polyurethanes, modified with cinnamaldehyde, as potential materials for fabrication of wound dressings. Polym Bull 76:2725–2742

    CAS  Google Scholar 

  3. Alven S, Adeyemi S, Ubanako P, Ndinteh D, Choonara Y, Aderibigbe B (2023) Efficacy of co-loading Ag nanoparticles and metronidazole in PEG–gelatin-based sponges for the treatment of chronic wounds. Polym Bull. https://doi.org/10.1007/s00289-023-04915-1

    Article  Google Scholar 

  4. He J, Shi M, Liang Y, Guo B (2020) Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem Eng J 394:124888

    CAS  Google Scholar 

  5. Ma YX, Wang CY, Li YY, Li J, Wan QQ, Chen JH et al (2020) Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv Sci 7(1):1901872

    CAS  Google Scholar 

  6. Nalini T, Khaleel Basha S, Mohamed Sadiq A, Sugantha KV (2023) Fabrication and evaluation of nanoencapsulated quercetin for wound healing application. Polym Bull 80(1):515–540

    CAS  Google Scholar 

  7. Kannan S, Solomon A, Krishnamoorthy G, Marudhamuthu M (2021) Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci Rep 11(1):1–19

    Google Scholar 

  8. Sadeghi-Avalshahr AR, Molavi AM, Nokhasteh S, Harati Z (2023) Recent advances in fabrication of smart dressings for real-time monitoring of pH in chronic wounds—a review. Polym Bull 80(6):5831–5859

    CAS  Google Scholar 

  9. Perović A, Stanković MZ, Veljković VB, Kostić MD, Stamenković OS (2021) A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers. Chin J Chem Eng 29:126–130

    Google Scholar 

  10. Prusinowska R, Śmigielski KB (2014) Composition, biological properties and therapeutic effects of lavender L: a review. Herba Pol 60(2):56–66

    Google Scholar 

  11. Moussii IM, Nayme K, Timinouni M, Jamaleddine J, Filali H, Hakkou F (2020) Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 10:100057

    Google Scholar 

  12. Hajiali H, Summa M, Russo D, Armirotti A, Brunetti V, Bertorelli R et al (2016) Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4(9):1686–1695

    CAS  PubMed  Google Scholar 

  13. Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C et al (2017) Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll 70:36–45

    CAS  Google Scholar 

  14. Yesappa L, Niranjana M, Ashokkumar S, Vijeth H, Sharanappa C, Raghu S et al (2018) Synthesis, characterization and absorption study of aloe vera doped polyaniline Bio-composite. Mater Today Proc 5(10):21076–21081

    CAS  Google Scholar 

  15. Zillo RR, da Silva PPM, de Oliveira J, da Glória EM, Spoto MHF (2018) Carboxymethylcellulose coating associated with essential oil can increase papaya shelf life. Sci Hortic 239:70–77

    CAS  Google Scholar 

  16. Bayindir Bilgic M, Lacin NT, Berber H, Mansuroglu B (2019) In vitro evaluation of alpha-tocopherol loaded carboxymethylcellulose chitosan copolymers as wound dressing materials. Mater Technol 34(7):386–393

    CAS  Google Scholar 

  17. Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334

    CAS  PubMed  Google Scholar 

  18. Rezaei F, Shekarforoush S, Hosseinzadeh S, Basiri S (2021) The effect of carboxymethyl cellulose coating incorporated with clove oil nanoemulsion on quality of shrimp (Litopenaeus vannamei) during refrigerated storage. Iran J Vet Res 22(2):129

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Joe MM, Chauhan PS, Bradeeba K, Shagol C, Sivakumaar PK, Sa T (2012) Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20 C. Food Control 23(2):564–570

    CAS  Google Scholar 

  20. Sharanappa C, Ambalgi AP, Babaladimath G (2019) Gellan gum based silver nanocomposite hydrogel: preparation, characterisation and anti-bacterial study. Mater Today Proc 18:3937–3945

    CAS  Google Scholar 

  21. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    CAS  PubMed  Google Scholar 

  22. Rayar A, Babaladimath G, Ambalgi A, Chapi S (2020) An eco-friendly synthesis, characterisation and antibacterial applications of gellan gum based silver nanocomposite hydrogel. Mater Today Proc 23:211–220

    CAS  Google Scholar 

  23. Ebrahiminaseri A, Sadeghizadeh M, Moshaii A, Asgaritarghi G, Safari Z (2021) Combination treatment of dendrosomal nanocurcumin and low-level laser therapy develops proliferation and migration of mouse embryonic fibroblasts and alter TGF-β, VEGF, TNF-α and IL-6 expressions involved in wound healing process. PLoS ONE 16(5):e0247098

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang T, Wang Z, Sun J (2020) Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res Ther 11(1):1–10

    Google Scholar 

  25. Shukla A, Choudhury S, Chaudhary G, Singh V, Prabhu SN, Pandey S et al (2021) Chitosan and gelatin biopolymer supplemented with mesenchymal stem cells (Velgraft®) enhanced wound healing in goats (Capra hircus): involvement of VEGF, TGF and CD31. J Tissue Viability 30(1):59–66

    PubMed  Google Scholar 

  26. Gahruie HH, Ziaee E, Eskandari MH, Hosseini SMH (2017) Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym 166:93–103

    Google Scholar 

  27. Soni G, Yadav KS (2014) High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm Dev Technol 19(6):651–661

    CAS  PubMed  Google Scholar 

  28. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications—a review. J Adv Res 6(2):105–121

    CAS  PubMed  Google Scholar 

  29. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    CAS  Google Scholar 

  30. Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49(6):1487–1494

    CAS  Google Scholar 

  31. Leisi S, Farahpour MR (2023) Effectiveness of topical administration of platelet-rich plasma on the healing of methicillin-resistant Staphylococcus aureus-infected full-thickness wound model. J Plast Reconstr Aesthet Surg 77:416–429

    PubMed  Google Scholar 

  32. Ebrahimi A, Farahpour MR, Amjadi S, Mohammadi M, Hamishehkar H (2023) Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int J Pharm 630:122457

    CAS  PubMed  Google Scholar 

  33. Patel JB, Cockerill F, Bradford PA (2015) Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement

  34. Joughi NFG, Farahpour MR, Mohammadi M, Jafarirad S, Mahmazi S (2022) Investigation on the antibacterial properties and rapid infected wound healing activity of silver/laterite/chitosan nanocomposites. J Ind Eng Chem 111:64–75

    Google Scholar 

  35. Pourkarim R, Farahpour MR, Rezaei SA (2022) Comparison effects of platelet-rich plasma on healing of infected and non-infected excision wounds by the modulation of the expression of inflammatory mediators: experimental research. J Trauma Emerg Surg 48(4):3339–3347

    Google Scholar 

  36. Rahmanpour A, Farahpour MR, Shapouri R, Jafarirad S, Rahimi P (2022) Synthesis and characterization of alumina-based nanocomposites of TiO2/Al2O3/Chitosan with antibacterial properties accelarate healing of infected excision wounds. Colloids Surf A: Physicochem Eng 644:128839

    CAS  Google Scholar 

  37. Liao F, Chen L, Luo P, Jiang Z, Chen Z, Wang Z et al (2020) PC4 serves as a negative regulator of skin wound healing in mice. Burns Trauma. https://doi.org/10.1093/burnst/tkaa010

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hassanpouraghdam MB, Hassani A, Vojodi L, Asl BH, Rostami A (2011) Essential oil constituents of Lavandula officinalis Chaix. from Northwest Iran. Chemija 22(3):167–171

    CAS  Google Scholar 

  39. Abou Baker DH, Amarowicz R, Kandeil A, Ali MA, Ibrahim EA (2021) Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J Agric Food Res 4:100135

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Akhtar M, Murray BS, Afeisume EI, Khew SH (2014) Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocoll 34:62–67

    CAS  Google Scholar 

  41. Hassanalizadeh Chari F, Akrami R, Ghelichi A, Ebrahimi P (2020) The effect of Lavandula officinalis nanoemulsion on growth performance, body composition, haematology and immunity parameters of Oncorhynchus mykiss. J Appl Anim Res 48(1):340–347

    CAS  Google Scholar 

  42. Ebrahimi P, Salmanpour S (2014) Topical quercetin nanoemulsions: optimization of preparation using chemometric approaches. Pharm Chem J 48(6):402–407

    CAS  Google Scholar 

  43. Abdelrasoul MA, Ahmed AR, Badawy M (2018) Formulation, characterizations and antibacterial activity of some nanoemulsions incorporating monoterpenes. J Plant Prot Pathol 9(10):697–705

    Google Scholar 

  44. Huang H, Belwal T, Liu S, Duan Z, Luo Z (2019) Novel multi-phase nano-emulsion preparation for co-loading hydrophilic arbutin and hydrophobic coumaric acid using hydrocolloids. Food Hydrocoll 93:92–101

    CAS  Google Scholar 

  45. Wu Z, Wu J, Zhang R, Yuan S, Lu Q, Yu Y (2018) Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification. Carbohydr Polym 181:56–62

    CAS  PubMed  Google Scholar 

  46. Lamba H, Sathish K, Sabikhi L (2015) Double emulsions: emerging delivery system for plant bioactives. Food Bioprocess Tech 8(4):709–728

    CAS  Google Scholar 

  47. Suárez MA, Gutiérrez G, Coca J, Pazos C (2013) Geometric parameters influencing production of O/W emulsions using flat metallic membranes and scale-up. J Membr Sci 430:140–149

    Google Scholar 

  48. Pirsa S, Karimi Sani I, Pirouzifard MK, Erfani A (2020) Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam 37(4):634–648

    CAS  Google Scholar 

  49. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schönherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6(7):4766–4777

    CAS  PubMed  Google Scholar 

  50. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    CAS  Google Scholar 

  51. Ashaolu TJ (2021) Nanoemulsions for health, food, and cosmetics: a review. Environ Chem Lett 19(4):3381–3395

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dasgupta N, Ranjan S, Gandhi M (2019) Nanoemulsions in food: MARKET demand. Environ Chem Lett 17(2):1003–1009

    CAS  Google Scholar 

  53. Yap WS, Dolzhenko AV, Jalal Z, Hadi MA, Khan TM (2019) Efficacy and safety of lavender essential oil (Silexan) capsules among patients suffering from anxiety disorders: a network meta-analysis. Sci Rep 9(1):1–11

    Google Scholar 

  54. Kasper S, Gastpar M, Müller WE, Volz H-P, Möller H-J, Dienel A et al (2010) Efficacy and safety of silexan, a new, orally administered lavender oil preparation, in subthreshold anxiety disorder–evidence from clinical trials. Wien Med Wochenschr 160(21):547–556

    PubMed  Google Scholar 

  55. Li X, Zhou M, Qi J, Han Y (2021) Efficacy and safety of inotuzumab ozogamicin (CMC-544) for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma: a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk 21(3):e227–e247

    CAS  PubMed  Google Scholar 

  56. Shah R, Kolanos R, DiNovi MJ, Mattia A, Kaneko KJ (2017) Dietary exposures for the safety assessment of seven emulsifiers commonly added to foods in the United States and implications for safety. Food Addit Contam 34(6):905–917

    CAS  Google Scholar 

  57. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ (2016) Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 194:410–415

    CAS  PubMed  Google Scholar 

  58. Li W, Chen H, He Z, Han C, Liu S, Li Y (2015) Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT-Food Sci Technol 62(1):39–47

    CAS  Google Scholar 

  59. Shafaghat A, Salimi F, Amani-Hooshyar V (2012) Phytochemical and antimicrobial activities of Lavandula officinalis leaves and stems against some pathogenic microorganisms. J Med Plant Res 6(3):455–460

    CAS  Google Scholar 

  60. Marín I, Sayas-Barberá E, Viuda-Martos M, Navarro C, Sendra E (2016) Chemical composition, antioxidant and antimicrobial activity of essential oils from organic fennel, parsley, and lavender from Spain. Foods 5(1):18

    PubMed  PubMed Central  Google Scholar 

  61. Hu D, Wang H, Wang L (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT-Food Sci Technol 65:398–405

    CAS  Google Scholar 

  62. Liu X, Cai J, Chen H, Zhong Q, Hou Y, Chen W et al (2020) Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb Pathog 141:103980

    CAS  PubMed  Google Scholar 

  63. Mori H-M, Kawanami H, Kawahata H, Aoki M (2016) Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement Altern Med 16(1):1–11

    Google Scholar 

  64. Samuelson R, Lobl M, Higgins S, Clarey D, Wysong A (2020) The effects of lavender essential oil on wound healing: a review of the current evidence. J Altern Complement Med 26(8):680–690

    PubMed  Google Scholar 

  65. Ponrasu T, Cheng T-H, Wang L, Cheng Y-S, Wang H-MD (2020) Natural biocompatible polymer-based polyherbal compound gel for rapid wound contraction and promote re-epithelialization: an in vivo study. Mater Lett 261:126911

    CAS  Google Scholar 

  66. Alam P, Ansari MJ, Anwer MK, Raish M, Kamal YK, Shakeel F (2017) Wound healing effects of nanoemulsion containing clove essential oil. Artif Cells Nanomed Biotechnol 45(3):591–597

    CAS  PubMed  Google Scholar 

  67. Vakili A, Sharifat S, Akhavan MM, Bandegi AR (2014) Effect of lavender oil (Lavandula angustifolia) on cerebral edema and its possible mechanisms in an experimental model of stroke. Brain Res 1548:56–62

    CAS  PubMed  Google Scholar 

  68. Inan M, Kaya DA, Albu MG (2013) The effect of lavender essential oils on collagen hydrolysate. Rev Chim 64:1037–1042

    CAS  Google Scholar 

  69. Koca Kutlu A, Çeçen D, Gürgen SG, Sayın O, Çetin F (2013) A comparison study of growth factor expression following treatment with transcutaneous electrical nerve stimulation, saline solution, povidone-iodine, and lavender oil in wounds healing. Evid-Based Complement Altern Med. https://doi.org/10.1155/2013/361832

    Article  Google Scholar 

  70. Aoe M, Ueno-Iio T, Shibakura M, Shinohata R, Usui S, Arao Y et al (2017) Lavender essential oil and its main constituents inhibit the expression of TNF-α-induced cell adhesion molecules in endothelial cells. Acta Med Okayama 71(6):493–503

    CAS  PubMed  Google Scholar 

  71. Yen YH, Pu CM, Liu CW, Chen YC, Chen YC, Liang CJ et al (2018) Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 15(4):605–617

    PubMed  PubMed Central  Google Scholar 

  72. Benington L, Rajan G, Locher C, Lim LY (2020) Fibroblast growth factor 2—a review of stabilisation approaches for clinical applications. Pharmaceutics 12(6):508

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kidd LR, Brock GN, VanCleave TT, Benford ML, Lavender NA, Kruer TL et al (2010) Angiogenesis-associated sequence variants relative to breast cancer recurrence and survival. Cancer Causes Control 21(10):1545–1557

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

In the name of Allah. This study was extracted from the thesis of Miss. Elahe Soltani. The authors would like to thank the Day Petronic and Sara laboratories and Miss Frough Janani Fard.

Funding

This research did not receive any specific grant from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Farahpour.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, E., Farahpour, M.R. & Tabatabaei, Z.G. Lavender officinalis essential oil conjugated carboxymethyl cellulose: as boosters of antibacterial and bio enhancers to accelerate the repair of full-thickness infected wound. Polym. Bull. 81, 6091–6113 (2024). https://doi.org/10.1007/s00289-023-04984-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04984-2

Keywords

Navigation