Skip to main content
Log in

Augmentation of bioactivity with addition of clove essential oil into fish scale gelatin, agar and chitosan composite film and biodegradable features

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The root cause of global pollution is the reflection of usage of non-degradable plastics. The solutions and methods to mitigate the plastic pollution are in high demand. The application of green technology in polymer science from the marine resource gives stability to the ecosystem. The bio-composite films were fabricated using gelatin of fish scale, agar of seaweed and chitosan of shrimp shell waste by a solvent casting technique. The plasticity and bioactivity enhanced using glycerol and clove essential oil. The physic-chemical and mechanical properties of the film were evaluated against the range of test of thickness, tensile strength, elongation at break, puncture resistance, water vapor permeability, Attenuated Total Reflection—Fourier Transform Infrared spectroscopy, X-ray diffraction and atomic force microscopy. The characteristics of active packaging mechanism assessed based on antimicrobial and antioxidative properties. A level of 1.5% clove essential oil ration was given desirable properties of active packaging material. The biodegradability was calculated in terms of percentage weight loss under the soil burial and water immersion test. The biodegradation process of composite film took 21 days in soil and 158 in water. Hence, the bio-composite film prepared from green technology is a promising alternative to the conventional plastic to mitigate plastic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhong Y, Godwin P, Jin Y, Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review. Adv Ind Eng Polym Res 3:27–35. https://doi.org/10.1016/J.AIEPR.2019.11.002

    Article  Google Scholar 

  2. Gironi F, Piemonte V (2011) Bioplastics and petroleum-based plastics: strengths and weaknesses 33:1949–1959. https://doi.org/10.1080/15567030903436830

  3. Production G plastic Global plastic production 1950–2019. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed 15 May 2021

  4. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5:1–11. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  5. Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511. https://doi.org/10.1021/ACSSUSCHEMENG.9B06635

    Article  CAS  Google Scholar 

  6. Ivar Do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364. https://doi.org/10.1016/J.ENVPOL.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  7. Pradhan G, Chandra Sharma Y (2020) Studies on green synthesis of glycerol carbonate from waste cooking oil derived glycerol over an economically viable NiMgOx heterogeneous solid base catalyst. J Clean Prod 264:121258. https://doi.org/10.1016/j.jclepro.2020.121258

    Article  CAS  Google Scholar 

  8. López OV, Zaritzky NE, García MA (2010) Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. J Food Eng 100:160–168. https://doi.org/10.1016/j.jfoodeng.2010.03.041

    Article  CAS  Google Scholar 

  9. Woggum T, Sirivongpaisal P, Wittaya T (2014) Properties and characteristics of dual-modified rice starch based biodegradable films. Int J Biol Macromol 67:490–502. https://doi.org/10.1016/j.ijbiomac.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  10. Doh H, Dunno KD, Whiteside WS (2020) Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films. Food Biosci 38:100795. https://doi.org/10.1016/J.FBIO.2020.100795

    Article  CAS  Google Scholar 

  11. Park J, Nam J, Yun H et al (2021) Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr Polym 254:117317. https://doi.org/10.1016/j.carbpol.2020.117317

    Article  CAS  PubMed  Google Scholar 

  12. Venugopal V (2019) Sulfated and non-sulfated polysaccharides from seaweeds and their uses: an overview. ECronicon Nutr 2:126–141

    Google Scholar 

  13. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  14. Chopin N, Guillory X, Weiss P et al (2014) Design polysaccharides of marine origin: chemical modifications to reach advanced versatile compounds. Curr Org Chem 18:867–895. https://doi.org/10.2174/138527281807140515152334

    Article  CAS  Google Scholar 

  15. Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow’s packagings: a review. Crit Rev Food Sci Nutr 38:299–313

    Article  CAS  PubMed  Google Scholar 

  16. Schrieber R, Gareis H (2007) Gelatine handbook: theory and industrial practice. Wiley-VCH

  17. Huang T, Tu Z, Shangguan X et al (2019) Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 86:260–269

    Article  CAS  Google Scholar 

  18. Li P, Wu G (2018) Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  CAS  PubMed  Google Scholar 

  19. Hoque MS, Benjakul S, Prodpran T, Songtipya P (2011) Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate. Int J Biol Macromol 49:663–673. https://doi.org/10.1016/j.ijbiomac.2011.06.028

    Article  CAS  PubMed  Google Scholar 

  20. Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS (2020) Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers (Basel) 12:1–10. https://doi.org/10.3390/polym12123051

  21. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR et al (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420. https://doi.org/10.1016/j.algal.2019.101420

    Article  Google Scholar 

  22. Armisén R, Galatas F (2009) Agar. In: Handbook of hydrocolloids: second edition. Elsevier Inc., pp 82–107

  23. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications: a review. Int J Biol Macromol 159:1165–1176

    Article  CAS  PubMed  Google Scholar 

  24. Rhim JW (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci Technol 37:323–330. https://doi.org/10.1016/J.LWT.2003.09.008

    Article  CAS  Google Scholar 

  25. Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromol 2:1089–1096. https://doi.org/10.1021/BM010008G

    Article  CAS  Google Scholar 

  26. Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327. https://doi.org/10.1016/J.IJBIOMAC.2015.10.081

    Article  CAS  PubMed  Google Scholar 

  27. Jiang X, Zhang X (2017) Preparation and properties of plasticized chitosan/starch cast films using AlCl3·6H2O aqueous solution as the solvent. Polym Bull 74:1817–1830. https://doi.org/10.1007/s00289-016-1806-0

    Article  CAS  Google Scholar 

  28. Srinivasa PC, Ramesh MN, Tharanathan RN (2007) Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocoll 21:1113–1122. https://doi.org/10.1016/j.foodhyd.2006.08.005

    Article  CAS  Google Scholar 

  29. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll 15:423–432. https://doi.org/10.1016/S0268-005X(01)00061-3

    Article  CAS  Google Scholar 

  30. Volery P, Besson R, Schaffer-Lequart C (2004) Characterization of commercial carrageenans by fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52:7457–7463. https://doi.org/10.1021/JF040229O

    Article  CAS  PubMed  Google Scholar 

  31. Lee M-S, Lee S-H, Ma Y-H et al (2005) Effect of plasticizer and cross-linking agent on the physical properties of protein films. Prev Nutr Food Sci 10:88–91. https://doi.org/10.3746/jfn.2005.10.1.088

    Article  CAS  Google Scholar 

  32. Han JH, Aristippos G (2005) Edible films and coatings. A review. In: Innovations in food packaging. Elsevier Ltd, pp 239–262

  33. Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92:1335–1347. https://doi.org/10.1016/j.carbpol.2012.09.069

    Article  CAS  PubMed  Google Scholar 

  34. Sharma S, Singh S, Bond J, et al (2014) Evaluation of antibacterial properties of essential oils from clove and eucalyptus. 7

  35. Chaieb K, Zmantar T, Ksouri R et al (2007) Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50:403–406. https://doi.org/10.1111/J.1439-0507.2007.01391.X

    Article  PubMed  Google Scholar 

  36. Abdul Khalil HPS, Tye YY, Saurabh CK, et al (2017) Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. eXPRESS Polym Lett 11:244–265. https://doi.org/10.3144/EXPRESSPOLYMLETT.2017.26

  37. Martucci JF, Ruseckaite RA (2009) Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions. Polym Degrad Stab 94:1307–1313. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.03.018

    Article  CAS  Google Scholar 

  38. Sae-Leaw T, Benjakul S (2015) Physico-chemical properties and fishy odour of gelatin from seabass (Lates calcarifer) skin stored in ice. Food Biosci 10:59–68. https://doi.org/10.1016/j.fbio.2015.02.002

    Article  CAS  Google Scholar 

  39. Thiex N (2009) Evaluation of analytical methods for the determination of moisture, crude protein, crude fat, and crude fiber in distillers dried grains with solubles. J AOAC Int 92:61–73. https://doi.org/10.1093/jaoac/92.1.61

    Article  CAS  PubMed  Google Scholar 

  40. Fathiraja P, Gopalrajan S, Karunanithi M et al (2021) Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull 2021:1–27. https://doi.org/10.1007/S00289-021-03797-5

    Article  Google Scholar 

  41. Jouki M, Mortazavi SA, Yazdi FT, Koocheki A (2014) Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr Polym 99:537–546. https://doi.org/10.1016/J.CARBPOL.2013.08.077

    Article  CAS  PubMed  Google Scholar 

  42. Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644. https://doi.org/10.1016/J.FOODRES.2006.01.013

    Article  CAS  Google Scholar 

  43. Doh H, Dunno KD, Whiteside WS (2020) Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll 105:105744. https://doi.org/10.1016/j.foodhyd.2020.105744

  44. ASTM E96/E96M—13 Standard Test Method for Water Vapor Transmission of Materials (PDF Download). https://shop.iccsafe.org/astm-e96-e96m-13-standard-test-method-for-water-vapor-transmission-of-materials-pdf-download.html. Accessed 16 May 2021

  45. ASTM D882 - 18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/Standards/D882. Accessed 16 May 2021

  46. Ahmad M, Benjakul S (2011) Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocoll 25:381–388. https://doi.org/10.1016/j.foodhyd.2010.07.004

    Article  CAS  Google Scholar 

  47. Nuthong P, Benjakul S, Prodpran T (2009) Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int J Biol Macromol 44:143–148. https://doi.org/10.1016/j.ijbiomac.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  48. Raghav D, Deepthi PR, Dhivyalakshmi R, et al (2017) Investigation on the growth and characterization of pure and oregano extract doped kip single crystals. SJ Impact Factor 6 887. https://doi.org/10.22214/ijraset.2017.11139

  49. Van der Meeren L, Verduijn J, Krysko D V., Skirtach AG (2020) AFM analysis enables differentiation between apoptosis, necroptosis, and ferroptosis in murine cancer cells. iScience 23. https://doi.org/10.1016/j.isci.2020.101816

  50. Chiellini E, Cinelli P, Corti A, Kenawy ER (2001) Composite films based on waste gelatin: thermal–mechanical properties and biodegradation testing. Polym Degrad Stab 73:549–555. https://doi.org/10.1016/S0141-3910(01)00132-X

    Article  CAS  Google Scholar 

  51. Al-Hashimi AG, Ammar AB, Lakshmanan G, et al (2020) Development of a millet starch edible film containing clove essential oil. Foods 2020, Vol 9, Page 184 9:184. https://doi.org/10.3390/FOODS9020184

  52. Talón E, Vargas M, Chiralt A, González-Martínez C (2019) Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT 113:108290. https://doi.org/10.1016/J.LWT.2019.108290

  53. Heredia-Guerrero JA, Ceseracciu L, Guzman-Puyol S et al (2018) Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydr Polym 192:150–158. https://doi.org/10.1016/J.CARBPOL.2018.03.050

    Article  CAS  PubMed  Google Scholar 

  54. Alma HM, Ertas M, Nitz S, Kollmannsberger H (2007) Research on essential oil content and chemical composition of Turkish Clove (Syzygium aromaticum L.). BioResources 2:265–269

    Article  CAS  Google Scholar 

  55. Alireza D, Ramin K, Hedayat H et al (2014) Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan J Res Med Sci J 16:34–42

    Google Scholar 

  56. Lin KH, Yeh SY, Lin MY et al (2007) Major chemotypes and antioxidative activity of the leaf essential oils of Cinnamomum osmophloeum Kaneh. From a clonal orchard. Food Chem 105:133–139. https://doi.org/10.1016/J.FOODCHEM.2007.03.051

    Article  CAS  Google Scholar 

  57. Weerakkody NS, Caffin N, Turner MS, Dykes GA (2010) In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21:1408–1414. https://doi.org/10.1016/J.FOODCONT.2010.04.014

    Article  CAS  Google Scholar 

  58. Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:1–8. https://doi.org/10.1186/1472-6882-6-39/COMMENTS

    Article  Google Scholar 

  59. Nuñez L, Aquino ’ (2012) Microbicide activity of clove essential oil (Eugenia Caryophyllata). Braz J Microbiol 1255–1260

  60. Zivanovic S, Chi S, Draughon AF (2005) Antimicrobial activity of chitosan films enriched with essential oils. J Food Sci 70:M45–M51. https://doi.org/10.1111/J.1365-2621.2005.TB09045.X

    Article  CAS  Google Scholar 

  61. Galus S, Lenart A (2013) Development and characterization of composite edible films based on sodium alginate and pectin. J Food Eng 115:459–465. https://doi.org/10.1016/j.jfoodeng.2012.03.006

    Article  CAS  Google Scholar 

  62. García MA, Pinotti A, Martino MN, Zaritzky NE (2009) Characterization of starch and composite edible films and coatings. In: Edible films and coatings for food applications. Springer, New York, pp 169–209

  63. Mulyani TS, Egha Rodhu Hansyah Jurusan Teknologi Pangan -FTI -UPN dan, Rungkut Madya -Surabaya J (2010) Physical and mechanical properties of edible film from Porang (Amorphopallus oncophyllus) flour and carboxymethylcellulose. J Teknol Pertan 11:196–201

  64. Arham R, Mulyati MT, Metusalach M, Salengke S (2016) Physical and mechanical properties of agar based edible film with glycerol plasticizer. Int Food Res J 23:1669–1675

    CAS  Google Scholar 

  65. Nordin N, Othman SH, Rashid SA, Basha RK (2020) Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll 106:105884. https://doi.org/10.1016/j.foodhyd.2020.105884

    Article  CAS  Google Scholar 

  66. Shaikh M, Haider S, Ali TM, Hasnain A (2019) Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int J Biol Macromol 124:209–219. https://doi.org/10.1016/j.ijbiomac.2018.11.135

    Article  CAS  PubMed  Google Scholar 

  67. Benavides S, Villalobos-Carvajal R, Reyes JE (2012) Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110:232–239. https://doi.org/10.1016/J.JFOODENG.2011.05.023

    Article  CAS  Google Scholar 

  68. Rivero S, García MA, Pinotti A (2010) Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innov Food Sci Emerg Technol 11:369–375. https://doi.org/10.1016/j.ifset.2009.07.005

    Article  CAS  Google Scholar 

  69. Sifuentes-Nieves I, Rendón-Villalobos R, Jiménez-Aparicio A, et al (2015) Physical, physicochemical, mechanical, and structural characterization of films based on gelatin/glycerol and carbon nanotubes. Int J Polym Sci https://doi.org/10.1155/2015/763931

  70. Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging. Food Eng Rev 3:79–93

    Article  Google Scholar 

  71. Rioux LE, Turgeon SL, Beaulieu M (2007) Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric 87:1630–1638. https://doi.org/10.1002/jsfa.2829

    Article  CAS  Google Scholar 

  72. Saedi S, Shokri M, Rhim JW (2020) Preparation of carrageenan-based nanocomposite films incorporated with functionalized halloysite using AgNP and sodium dodecyl sulfate. Food Hydrocoll 106:105934. https://doi.org/10.1016/j.foodhyd.2020.105934

    Article  CAS  Google Scholar 

  73. Srinivasa PC, Ravi R, Tharanathan RN (2007) Effect of storage conditions on the tensile properties of eco-friendly chitosan films by response surface methodology. J Food Eng 80:184–189. https://doi.org/10.1016/j.jfoodeng.2006.05.007

    Article  CAS  Google Scholar 

  74. Bajić M, Oberlintner A, Kõrge K et al (2020) Formulation of active food packaging by design: Linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. Int J Biol Macromol 160:971–978. https://doi.org/10.1016/j.ijbiomac.2020.05.186

    Article  CAS  PubMed  Google Scholar 

  75. Hidayati S, Zulferiyenni Maulidia U et al (2021) Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste. Heliyon 7:e07799. https://doi.org/10.1016/J.HELIYON.2021.E07799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luzi F, Torre L, Kenny JM, Puglia D (2019) Bio- and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Mater 12:471. https://doi.org/10.3390/MA12030471

    Article  CAS  Google Scholar 

  77. McHugh TH, Krochta JM (1994) Water vapor permeability properties of edible whey protein-lipid emulsion films. J Am Oil Chem Soc 71:307–312. https://doi.org/10.1007/BF02638058

    Article  CAS  Google Scholar 

  78. Jiang Y, Lan W, Sameen DE et al (2020) Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. Int J Biol Macromol 160:340–351. https://doi.org/10.1016/j.ijbiomac.2020.05.202

    Article  CAS  PubMed  Google Scholar 

  79. Salmieri S, Lacroix M (2006) Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. J Agric Food Chem 54:10205–10214. https://doi.org/10.1021/JF062127Z

    Article  CAS  PubMed  Google Scholar 

  80. Kun WW, Ye R et al (2017) Mechanical and barrier properties of maize starch–gelatin composite films: effects of amylose content. J Sci Food Agric 97:3613–3622. https://doi.org/10.1002/jsfa.8220

    Article  CAS  Google Scholar 

  81. Pouralkhas M, Kordjazi M, Ojagh SM, Farsani OA (2023) Physicochemical and functional characterization of gelatin edible film incorporated with fucoidan isolated from Sargassum tenerrimum. Food Sci Nutr 1–12. https://doi.org/10.1002/fsn3.3402

  82. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166. https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  83. Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. 27:143–157. https://doi.org/10.1081/DDC-100000481

  84. El-Hefian EA, Nasef MM, Yahaya AH (2012) Preparation and characterization of chitosan/agar blended films: Part 1. Chemical structure and morphology. E-Journal Chem 9:1431–1439. https://doi.org/10.1155/2012/781206

    Article  CAS  Google Scholar 

  85. Liu L, Cai R, Wang Y et al (2018) Polydopamine-assisted silver nanoparticle self-assembly on sericin/agar film for potential wound dressing application. Int J Mol Sci 19:2875. https://doi.org/10.3390/ijms19102875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cui L, Gao S, Song X et al (2018) Preparation and characterization of chitosan membranes. RSC Adv 8:28433–28439. https://doi.org/10.1039/c8ra05526b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rhim JW, Wang LF (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 97–98:174–181. https://doi.org/10.1016/j.clay.2014.05.025

    Article  CAS  Google Scholar 

  88. Zhang B, Liu Y, Wang H, et al (2021) Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. Lwt 150:111961. https://doi.org/10.1016/j.lwt.2021.111961

  89. Yang H, Wang Y, Lai S et al (2007) Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci 72:R65–R75

    Article  CAS  PubMed  Google Scholar 

  90. Kavoosi G, Derakhshan M, Salehi M, Rahmati L (2018) Microencapsulation of zataria essential oil in agar, alginate and carrageenan. Innov Food Sci Emerg Technol 45:418–425. https://doi.org/10.1016/J.IFSET.2017.12.010

    Article  CAS  Google Scholar 

  91. Liakos I, Rizzello L, Scurr DJ et al (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463:137–145. https://doi.org/10.1016/J.IJPHARM.2013.10.046

    Article  CAS  PubMed  Google Scholar 

  92. Narancic T, O’Connor KE (2019) Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiol (UK) 165:129–137. https://doi.org/10.1099/MIC.0.000749/CITE/REFWORKS

    Article  CAS  Google Scholar 

  93. Dieckow J, Bayer C, Conceição PC et al (2009) Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur J Soil Sci 60:240–249. https://doi.org/10.1111/J.1365-2389.2008.01101.X

    Article  CAS  Google Scholar 

  94. Alvarez VA, Ruseckaite RA, Vázquez A (2006) Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil. Polym Degrad Stab 91:3156–3162. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2006.07.011

    Article  CAS  Google Scholar 

  95. Tihan TG, Ionita MD, Popescu RG, Iordachescu D (2009) Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Mater Chem Phys 118:265–269. https://doi.org/10.1016/J.MATCHEMPHYS.2009.03.019

    Article  CAS  Google Scholar 

  96. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91. https://doi.org/10.1016/S0964-8305(02)00177-4

    Article  CAS  Google Scholar 

  97. Kale G, Kijchavengkul T, Auras R et al (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277. https://doi.org/10.1002/MABI.200600168

    Article  CAS  PubMed  Google Scholar 

  98. Ferreira FV, Dufresne A, Pinheiro IF et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285. https://doi.org/10.1016/J.EURPOLYMJ.2018.08.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Dean, Fisheries College and Research Institute, Tamil Nadu, India, for permitting to carry out experiments in college laboratories. The authors express their sincere thanks to Director, ICAR- CIFT, Cochin, India, for support of analyzing optical parameters. The authors also thank the Principal, VOC College, Thoothukudi, India, for providing facilities of ATR-FTIR and AFM analysis. The authors also acknowledge the support from the Director, Bharat Ratna Prof.CNR Rao Research Centre, Coimbatore, India, for the analysis of XRD. The authors express their sincere thanks to the Prince of Songkla University and the National Research Council of Thailand for TGA analysis.

Funding

No specific grant was given to this research by funding organizations in the public, private, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiban Fathiraja.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This manuscript does not contain any kind of studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathiraja, P., Gopalrajan, S., Kumar, K. et al. Augmentation of bioactivity with addition of clove essential oil into fish scale gelatin, agar and chitosan composite film and biodegradable features. Polym. Bull. 81, 5329–5357 (2024). https://doi.org/10.1007/s00289-023-04961-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04961-9

Keywords

Navigation