Skip to main content
Log in

Preparation of new eco-friendly covalent dynamic network based on polylysine, cellulose nanowhisker dialdehyde, and chitosan for curcumin delivery

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dynamic covalent hydrogels are considered smart materials with a stimuli-sensitive nature and possessing great importance in biomedical applications. In the current work, a new hydrogel based on polylysine (PLL), cellulose nanowhisker dialdehyde (DACNW), and chitosan (Cs) containing pH-sensitive dynamic covalent imine bonds was synthesized and along with its synthesis its potential application in curcumin (CUR) delivery was studied. Also, the antibacterial activities of hydrogel and drug-loaded hydrogels were evaluated. The prepared hydrogel also was characterized using techniques such as XRD, UV–VIS, FE-SEM, TGA, FT-IR and 1H-NMR spectroscopy. The resulting hydrogel showed excellent pH dependent curcumin delivery. Moreover, curcumin-loaded hydrogel showed good antibacterial activity against both Gram-negative and Gram-positive bacteria. The resulting hydrogel due to its pH-sensitive imine bonds could be considered as smart anticancer drug carrier system with high antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu Z, Yang D, Long T, Yuan L, Qiu S, Li D, Ge L (2022) pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydr polym 277:118827. https://doi.org/10.1016/j.carbpol.2021.118827

    Article  CAS  PubMed  Google Scholar 

  2. Tehrani AD, Parsamanesh M (2017) Preparation, characterization and drug delivery study of a novel nanobiopolymeric multidrug delivery system. Mater Sci Eng C 73:516–524. https://doi.org/10.1016/j.msec.2016.12.103

    Article  CAS  Google Scholar 

  3. Young SA, Muthami J, Pitcher M, Antovski P, Wamea P, Murphy RD, Sheikhi A (2022) Engineering hairy cellulose nanocrystals for chemotherapy drug capture. Mater Today Chem 23:100711. https://doi.org/10.1016/j.mtchem.2021.100711

    Article  CAS  PubMed  Google Scholar 

  4. Ye Y, Bremner DH, Zhang H, Chen X, Lou J, Zhu LM (2022) Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors. Colloids Surf B Biointerfaces 210:112261. https://doi.org/10.1016/j.colsurfb.2021.112261

    Article  CAS  PubMed  Google Scholar 

  5. Anirudhan TS, Mohan M, Rajeev MR (2022) Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int J Biol Macromol 201:378–388. https://doi.org/10.1016/j.ijbiomac.2022.01.022

    Article  CAS  PubMed  Google Scholar 

  6. Shahriari MH, Hadjizadeh A, Abdouss M (2022) Advances in self-healing hydrogels to repair tissue defects. Polym Bull. https://doi.org/10.1007/s00289-022-04133-1

    Article  Google Scholar 

  7. Zhang W, Wang Y, Guo J, Huang C, Hu Y (2021) Polysaccharide supramolecular hydrogel microparticles based on carboxymethyl β-cyclodextrin/chitosan complex and edta-chitosan for controlled release of protein drugs. Polym Bull. https://doi.org/10.1007/s00289-021-03807-6

    Article  Google Scholar 

  8. Dissanayake S, Denny WA, Gamage S, Sarojini V (2017) Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 250:62–76. https://doi.org/10.1016/j.jconrel.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  9. Thakur S, Sharma B, Thakur A, Gupta VK, Alsanie WF, Makatsoris C, Thakur VK (2022) Synthesis and characterisation of zinc oxide modified biorenewable polysaccharides based sustainable hydrogel nanocomposite for Hg2+ ion removal: towards a circular bioeconomy. Bioresour Technol 348:126708. https://doi.org/10.1016/j.biortech.2022.126708

    Article  CAS  PubMed  Google Scholar 

  10. Dash TK, Konkimalla VB (2012) Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Mol Pharm 9(9):2365–2379. https://doi.org/10.1021/mp3001952

    Article  CAS  PubMed  Google Scholar 

  11. Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R (2017) Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 25(1):1–16. https://doi.org/10.3109/1061186X.2016.1172589

    Article  CAS  PubMed  Google Scholar 

  12. Shojaeiarani J, Shirzadifar A, Bajwa DS (2021) Robust and porous 3D-printed multifunctional hydrogels for efficient removal of cationic and anionic dyes from aqueous solution. Microporous Mesoporous Mater 327:111382. https://doi.org/10.1016/j.micromeso.2021.111382

    Article  CAS  Google Scholar 

  13. Nascimento DM, Nunes YL, Figueirêdo MC, de Azeredo HM, Aouada FA, Feitosa JP, Dufresne A (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448. https://doi.org/10.1039/c8gc00205c

    Article  CAS  Google Scholar 

  14. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

    Article  CAS  Google Scholar 

  15. Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Burruel-Ibarra SE (2022) Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull. https://doi.org/10.1007/s00289-022-04152-y

    Article  Google Scholar 

  16. Emam HE, Shaheen TI (2022) Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr Polym 278:118925. https://doi.org/10.1016/j.carbpol.2021.118925

    Article  CAS  PubMed  Google Scholar 

  17. Heydari S, Eshagh Ahmadi S (2022) Fabrication and characterization of polymer based magnetic dialdehyde carboxymethyl cellulose/cysteine nanocomposites for methylene blue removal. Polym Bull. https://doi.org/10.1007/s00289-022-04210-5

    Article  Google Scholar 

  18. Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27. https://doi.org/10.1016/j.ijbiomac.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Zou P, Yao J, Cui YN, Zhao T, Che J, Yang M, Gao C (2022) Advances in cellulose-based hydrogels for biomedical engineering: a review summary. Gels 8(6):364. https://doi.org/10.3390/gels8060364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsson PA, Pettersson T, Wågberg L (2014) Improved barrier films of cross-linked cellulose nanofibrils: a microscopy study. Green Mater 2(4):163–168. https://doi.org/10.1680/gmat.14.00018

    Article  Google Scholar 

  21. Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56(1):7–10. https://doi.org/10.1016/j.carbpol.2003.10.013

    Article  CAS  Google Scholar 

  22. Hou Q, Liu W, Liu Z, Duan B, Bai L (2008) Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydr Polym 74(2):235–240. https://doi.org/10.1016/j.carbpol.2008.02.010

    Article  CAS  Google Scholar 

  23. Scholl M, Nguyen TQ, Bruchmann B, Klok HA (2007) The thermal polymerization of amino acids revisited; synthesis and structural characterization of hyperbranched polymers from l-lysine. J Polym Sci Part A Polym Chem 45(23):5494–5508. https://doi.org/10.1002/pola.22295

    Article  CAS  Google Scholar 

  24. Lindh J, Carlsson DO, Strømme M, Mihranyan A (2014) Convenient one-pot formation of 2, 3-dialdehyde cellulose beads via periodate oxidation of cellulose in water. Biomacromol 15(5):1928–1932. https://doi.org/10.1021/bm5002944

    Article  CAS  Google Scholar 

  25. Soleimani K, Tehrani AD, Adeli M (2018) Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotoxicol Enviro Saf 147:34–42. https://doi.org/10.1016/j.ecoenv.2017.08.021

    Article  CAS  Google Scholar 

  26. Mu C, Guo J, Li X, Lin W, Li D (2012) Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27(1):22–29. https://doi.org/10.1016/j.foodhyd.2011.09.005

    Article  CAS  Google Scholar 

  27. LI, Y. (2015) Synthesis and biological activity of new spherical polylysine oligosaccharide dendrimers. Sen’i Gakkaishi. https://doi.org/10.2115/fiber.71.10

    Article  Google Scholar 

  28. Nejati K, Keypour H, Nezhad PDK, Rezvani Z, Asadpour-Zeynali K (2015) Preparation and characterization of cetirizine intercalated layered double hydroxide and chitosan nanocomposites. J Taiwan Inst Chem Eng 53:168–175. https://doi.org/10.1016/j.jtice.2015.02.035

    Article  CAS  Google Scholar 

  29. Udeni Gunathilake TMS, Ching YC, Chuah CH (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers 9(2):64. https://doi.org/10.3390/polym9020064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim UJ, Kim HJ, Choi JW, Kimura S, Wada M (2017) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24(12):5517–5528. https://doi.org/10.1007/s10570-017-1528-y

    Article  CAS  Google Scholar 

  31. Kushwaha DRS, Mathur KB, Balasubramanian D (1980) Poly(ε-L-lysine): synthesis and conformation. Biopolymers 19(2):219–229. https://doi.org/10.1002/bip.1980.360190202

    Article  CAS  PubMed  Google Scholar 

  32. Kumari S, Rath P, Kumar ASH, Tiwari TN (2015) Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov 3:77–85. https://doi.org/10.1016/j.eti.2015.01.002

    Article  Google Scholar 

  33. Xuan Yang, Jiang Guancheng, Li Yingying, Yang Lili, Zhang Xianmin (2015) Biodegradable oligo (poly-L-lysine) as a high-performance hydration inhibitor for shale. RSC Adv 5(103):84947–84958. https://doi.org/10.1039/C5RA16003K

    Article  CAS  Google Scholar 

  34. Lim BY, Poh CS, Voon CH, Salmah H (2015) Rheological and thermal study of chitosan filled thermoplastic elastomer composites. Appl Mech Mater 754:34–38. https://doi.org/10.4028/www.scientific.net/AMM.754-755.34

    Article  Google Scholar 

  35. Lu FF, Yu HY, Zhou Y, Yao JM (2016) Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: optimization with double response surface model and templates for silver nanoparticles. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2016.90

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Lorestan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Dadkhah Tehrani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, S., Dadkhah Tehrani, A. Preparation of new eco-friendly covalent dynamic network based on polylysine, cellulose nanowhisker dialdehyde, and chitosan for curcumin delivery. Polym. Bull. 81, 4893–4909 (2024). https://doi.org/10.1007/s00289-023-04938-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04938-8

Keywords

Navigation