Skip to main content
Log in

Synthesis of silver sulfide nanostructures and intercalation thereof into poly(hydroxybutyrate)-based multicomponent film

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthetic polymers have been extensively employed in various sectors of life. They, however, are mostly xenobiotic, toxic and persistent, thus causing certain environmental and health issues. So, the current awareness has raised the demand for eco-friendly biobased polymers. In this context, poly(hydroxybutyrate) (PHB) could be a promising candidate due to its eco-friendly and modifiable nature. The chemo-physical properties of such a biopolyester might be tailored through mediation with certain metallic nanoparticles, thus making its nanobiocomposite with improved mechanical stability. The present work aimed to prepare silver sulfide (Ag2S) nanoparticles (NPs)-mediated PHB-based conductive films and evaluate their structural and functional properties. The Ag2S NPs were prior prepared using the chemical precipitation/reduction approach and then impregnated into PHB-based nanobiocomposite films using the solution casting approach, whereas poly(lactic acid) was used as a reinforcing agent. The UV–visible spectrum of the Ag2S NPs dispersion exhibited a strong absorption peak at 260 nm. The z-average of the Ag2S NPs was recorded as 100 ± 10 nm with a polydispersity index of 0.095 and zeta potential of − 35 ± 5 mV. Fourier transform infrared analysis expressed successful mediation of Ag2S NPs in the biocomposite. The crystallinity of the nanobiocomposite specimen was calculated to be 79.23%, i.e., larger than that of the control PHB/PLA blend film having 53.69%. The prepared nanocomposite films were found electrically conductive with appropriate physicochemical, mechanical and thermal properties, and thus could find possible applications in biosensing and smart packing sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, Abdul-Ghani A (2022) Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Clean Eng Technol 6:100404. https://doi.org/10.1016/j.clet.2022.100404

    Article  Google Scholar 

  2. Naser AZ, Deiab I, Darras BM (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11:17151–17196. https://doi.org/10.1039/d1ra02390j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad 126:45–56. https://doi.org/10.1016/j.ibiod.2017.10.001

    Article  CAS  Google Scholar 

  4. Raza ZA, Khalil S, Majeed MI, Sarwar T (2023) Aminolysis of poly(hydroxybutyrate)-based multicomponent films for the impregnation of bovine serum albumin. Polym Bull 80:2019–2043. https://doi.org/10.1007/s00289-022-04165-7

    Article  CAS  Google Scholar 

  5. Munim SA, Raza ZA (2019) Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mater 26:881–901. https://doi.org/10.1007/s10934-018-0687-z

    Article  CAS  Google Scholar 

  6. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos B Eng 199:108238. https://doi.org/10.1016/j.compositesb.2020.108238

    Article  CAS  Google Scholar 

  7. Garcia-Garcia D, Lopez-Martinez J, Balart R, Strömberg E, Moriana R (2018) Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. Eur Polym J 104:10–18. https://doi.org/10.1016/j.eurpolymj.2018.04.036

    Article  CAS  Google Scholar 

  8. Ghanbari M, Salavati-Niasari M (2018) Tl4CdI6 nanostructures: Facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorg Chem 57:11443–11455. https://doi.org/10.1021/acs.inorgchem.8b01293

    Article  CAS  PubMed  Google Scholar 

  9. Karami M, Ghanbari M, Alshamsi HA, Rashki S, Niasari MS (2021) Facile fabrication of Tl4CdI6nanostructures as novel antibacterial and antibiofilm agents and photocatalysts in the degradation of organic pollutants. Inorg Chem Front 8:2442–2460. https://doi.org/10.1039/D1QI00155H

    Article  CAS  Google Scholar 

  10. Ghanbari M, Niasari MS (2021) Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities. Ecotoxicol Environ Saf 208:111712. https://doi.org/10.1016/j.ecoenv.2020.111712

    Article  CAS  PubMed  Google Scholar 

  11. Karami M, Ghanbari M, Amiri O, Niasari MS (2020) Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Sep Purif Technol 253:117526. https://doi.org/10.1016/j.seppur.2020.117526

    Article  CAS  Google Scholar 

  12. Panahi A, Ghanbari M, Dawi EA, Monsef R, Abass RR, Aljeboree AM, Niasari MS (2023) Simple sonochemical synthesis, characterization of TmVO4 nanostructure in the presence of Schiff-base ligands and investigation of its potential in the removal of toxic dyes. Ultrason Sonochem 95:106362. https://doi.org/10.1016/j.ultsonch.2023.106362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosseini M, Amiri M, Ghanbari M, Mahdi MA, Abdulsahib WK, Niasari MS (2022) Drug delivery based on chitosan, β-cyclodextrin and sodium carboxymethyl cellulose as well as nanocarriers for advanced leukemia treatment. Biomed Pharmacother 53:113369. https://doi.org/10.1016/j.biopha.2022.113369

    Article  CAS  Google Scholar 

  14. Rafiq S, Raza ZA, Aslam M, Bakhtiyar MJ (2022) Graphene nanosheets decorated with copper oxide nanoparticles for the photodegradation of methylene blue. Chem Res Chin Univ 38:1518–1525. https://doi.org/10.1007/s40242-022-2109-7

    Article  CAS  Google Scholar 

  15. Pandian SR, Deepak V, Kalishwaralal K, Gurunathan S (2011) Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzyme Microb Technol 48:319–325. https://doi.org/10.1016/j.enzmictec.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  16. Tamayo L, Palza H, Bejarano J, Zapata PA (2019) Polymer composites with metal nanoparticles: synthesis, properties, and applications. In: Pielichowski K, Majka TM (eds) Micro and nano technologies, polymer composites with functionalized nanoparticles. Elsevier, Amsterdam, pp 249–286. https://doi.org/10.1016/B978-0-12-814064-2.00008-1

    Chapter  Google Scholar 

  17. Krzywicka A, Megiel E (2020) Silver-polystyrene (Ag/PS) nanocomposites doped with polyvinyl alcohol (PVA)-fabrication and bactericidal activity. Nanomaterials (Basel) 10:2245. https://doi.org/10.3390/nano10112245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bozanić DK, Djoković V, Blanusa J, Nair PS, Georges MK, Radhakrishnan T (2007) Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. Eur Phys J E Soft Matter Biol Phys 22:51–59. https://doi.org/10.1140/epje/e2007-00008-y

    Article  CAS  Google Scholar 

  19. Akamatsu K, Takei S, Mizuhata M, Kajinami A, Deki S, Takeoka S, Fujii M, Hayashi S, Yamamoto K (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359:55–60. https://doi.org/10.1016/S0040-6090(99)00684-7

    Article  CAS  Google Scholar 

  20. Riojas AAC, Wong A, Planes GA, Sotomayor MD, La Rosa-Toro A, Baena-Moncada AM (2019) Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples. Sens Actuators B Chem 287:544–550. https://doi.org/10.1016/j.snb.2019.02.053

    Article  CAS  Google Scholar 

  21. Roy S, Ezati P, Priyadarshi R, Biswas D, Rhim JW (2022) Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications. Crit Rev Food Sci Nutr 11:1–14. https://doi.org/10.1080/10408398.2022.2144794

    Article  CAS  Google Scholar 

  22. Raza ZA, ur Rehman MS, Riaz S (2022) Zinc sulfide mediation of poly (hydroxybutyrate)/poly(lactic acid) nanocomposite film for potential UV protection applications. Int J Biol Macromol 222:2072–2082. https://doi.org/10.1016/j.ijbiomac.2022.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Riaz S, Raza ZA, Majeed MI (2019) Preparation of cadmium sulfide nanoparticles and mediation thereof across poly(hydroxybutyrate) nanocomposite. Polym Bull 77:775–791. https://doi.org/10.1007/s00289-019-02775-2

    Article  CAS  Google Scholar 

  24. Polyák P, Tilinger DM, Pukánszky B (2019) A simple spectroscopic method for the determination of the release kinetics of drugs from PHB. Polym Test 8:1106269. https://doi.org/10.1016/j.polymertesting.2019.106269

    Article  CAS  Google Scholar 

  25. Das S, Bandyopadhyay K, Ghosh MM (2021) Effect of stabilizer concentration on the size of silver nanoparticles synthesized through chemical route. Inorg Chem Commun 123:108319. https://doi.org/10.1016/j.inoche.2020.108319

    Article  CAS  Google Scholar 

  26. Aleali H, Sarkhosh L, Karimzadeh R, Mansour N (2011) Optical limiting response of Ag2S nanoparticles synthesized by laser ablation of silver target in DMSO. Phys Status Solidi 248:680–685. https://doi.org/10.1002/pssb.201046107

    Article  CAS  Google Scholar 

  27. Hammad TM, Shallah AM, Salem JK (2018) Optical properties of Mg- and Ni-doped Ag2S colloidal nanoparticles. J Korean Phys Soc 73:616–621. https://doi.org/10.3938/jkps.73.616

    Article  CAS  Google Scholar 

  28. Andral MC, Roger S, Montréjaud-Vignoles M, Herremans L (1999) Particle size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways. Water Environ Res 71:398–407

    Article  CAS  Google Scholar 

  29. Riaz S, Raza ZA, Majeed MI, Jan T (2018) Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite. Mater Res Express 5:055027. https://doi.org/10.1088/2053-1591/aac1f9

    Article  CAS  Google Scholar 

  30. Harish R, Nisha KD, Prabakaran S, Sridevi B, Harish S, Navaneethan M, Ponnusamy S, Hayakawa Y, Vinniee C, Ganesh MR (2020) Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications. Appl Surf Sci 499:143817. https://doi.org/10.1016/j.apsusc.2019.143817

    Article  CAS  Google Scholar 

  31. Kumari P, Chandran P, Khan SS (2014) Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications. J Photochem Photobiol B 141:235–240. https://doi.org/10.1016/j.jphotobiol.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  32. Qian X, Yin J, Feng S, Liu S, Zhu Z (2001) Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J Mater Chem 11:2504–2506. https://doi.org/10.1039/b103708k

    Article  CAS  Google Scholar 

  33. Shettigar RR, Misra NM, Patel K (2018) Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids. J Petrol Explor Prod Technol 8:597–606. https://doi.org/10.1007/s13202-017-0357-8

    Article  CAS  Google Scholar 

  34. Shakouri-Arani M, Salavati-Niasari M (2014) Structural and spectroscopic characterization of prepared Ag2S nanoparticles with a novel sulfuring agent. Spectrochim Acta A Mol Biomol Spectrosc 133:463–471. https://doi.org/10.1016/j.saa.2014.05.060

    Article  CAS  PubMed  Google Scholar 

  35. Alshuiael SM, Al-Ghouti MA (2020) Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone. PLoS ONE 15:e0232997. https://doi.org/10.1371/journal.pone.0232997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Depan D, Chirdon W, Khattab A (2021) Morphological and chemical analysis of low-density polyethylene crystallized on carbon and clay nanofillers. Polymers 13:1558. https://doi.org/10.3390/polym13101558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Awwad AM, Salem NM, Aqarbeh MM, Abdulaziz FM (2020) Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem Int 6:42–48. https://doi.org/10.31221/osf.io/8byuc

    Article  CAS  Google Scholar 

  38. Ma B, Wang X, He Y, Dong Z, Zhang X, Chen X, Liu T (2021) Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer 212:123280. https://doi.org/10.1016/j.polymer.2020.123280

    Article  CAS  Google Scholar 

  39. Raza ZA, Akram H, Bhatti IA (2023) Nano cadmium sulfide mediation of poly(hydroxybutyrate)-based biocomposite film for improved thermomechanical properties. J Inorg Organomet Polym 33:151–158. https://doi.org/10.1007/s10904-022-02487-7

    Article  CAS  Google Scholar 

  40. Anna DA, Arrigo R, Frache A (2019) PLA/PHB blends: biocompatibilizer effects. Polymers 11:1416. https://doi.org/10.3390/polym11091416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bakhtiyar MJ, Raza ZA, Aslam M, Bajwa SZ, Rehman MS, Rafiq S (2022) Cupric oxide nanoparticles incorporated poly(hydroxybutyrate) nanocomposite for potential biosensing application. Int J Biol Macromol 213:1018–1028. https://doi.org/10.1016/j.ijbiomac.2022.06.018

    Article  CAS  PubMed  Google Scholar 

  42. Manikandan NA, Pakshirajan K, Pugazhenthi G (2020) Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int J Biol Macromol 154:866–877. https://doi.org/10.1016/j.ijbiomac.2020.03.084

    Article  CAS  PubMed  Google Scholar 

  43. Johnston P, Freischmidt G, Easton CD, Greaves M, Casey PS, Bristow KL, Gunatillake PA, Adhikari R (2016) Hydrophobic-hydrophilic surface switching properties of nonchain extended poly(urethane)s for use in agriculture to minimize soil water evaporation and permit water infiltration. J Appl Polym Sci 134:44756. https://doi.org/10.1002/app.44756

    Article  CAS  Google Scholar 

  44. Spasova M, Stoilova O, Manolova N, Rashkov I, Naydenov M (2020) Electrospun eco-friendly materials based on poly (3-hydroxybutyrate)(PHB) and TiO2 with antifungal activity prospective for esca treatment. Polymers 12:1384. https://doi.org/10.3390/polym12061384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quispe MM, Lopez OV, Boina DA, Stumbe JF, Villar MA (2021) Glycerol-based additives of poly(3-hydroxybutyrate) films. Polym Test 93:107005. https://doi.org/10.1016/j.polymertesting.2020.107005

    Article  CAS  Google Scholar 

  46. Marano S, Laudadio E, Minnelli C, Stipa P (2022) Tailoring the barrier properties of PLA: a state-of-the-art review for food packaging applications. Polymers 14:1626. https://doi.org/10.3390/polym14081626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raza ZA, Mobeen A, Rehman MS, Majeed MI (2022) Synthesis of copper oxide nanoparticles embedded in porous chitosan membrane for photodegradation of organic dyes. Polym Bull. https://doi.org/10.1007/s00289-022-04582-8

    Article  Google Scholar 

  48. Przybysz M, Marć M, Klein M, Saeb MR, Formela K (2018) Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polym Test 67:513–521. https://doi.org/10.1016/j.polymertesting.2018.03.014

    Article  CAS  Google Scholar 

  49. Chen GQ, Jiang XR (2017) Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2:192–197. https://doi.org/10.1016/j.synbio.2017.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y (2015) Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C Mater Biol Appl 58:757–767. https://doi.org/10.1016/j.msec.2015.09.048

    Article  CAS  PubMed  Google Scholar 

  51. Qutub N, Pirzada BM, Umar K, Sabir S (2017) Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29. J Environ Chem Eng 4:808–817. https://doi.org/10.1016/j.jece.2015.10.031

    Article  CAS  Google Scholar 

  52. Yeo SY, Tan WL, Bakar MA, Ismail J (2010) Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: thermal stability and kinetic analysis of thermal degradation. Polym Degrad Stab 95:1299–1304. https://doi.org/10.1016/j.polymdegradstab.2010.02.025

    Article  CAS  Google Scholar 

  53. Aslam M, Kalyar MA, Raza ZA (2019) Effect of separate zinc, copper and graphene oxides nanofillers on electrical properties of PVA based composite strips. J Electron Mater 48:1116–1121. https://doi.org/10.1007/s11664-018-6793-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Higher Education Commission, Islamabad, in pursuing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, Z.A., Akram, H., ur Rehman, M.S. et al. Synthesis of silver sulfide nanostructures and intercalation thereof into poly(hydroxybutyrate)-based multicomponent film. Polym. Bull. 81, 4387–4406 (2024). https://doi.org/10.1007/s00289-023-04907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04907-1

Keywords

Navigation