Skip to main content
Log in

Synthesis of reactive polyamide bearing vinylcyclopropane moieties in the main chain and its cross-linking reaction

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new polyamide bearing vinylcyclopropane (VCP) moieties in the main chain was synthesized from a diamine bearing a VCP moiety. Thermal properties of the resulting polyamide were evaluated by thermogravimetry (TG) and differential scanning calorimetry. TG clarified that the polyamide was much more heat resistant than that of the analogous linear polyurea reported previously, implying that the VCP moieties in the polyamide underwent thermally induced ring-opening reaction to enable cross-linking of the polyamide. The polyamide was cross-linked also by ring-opening reaction triggered by addition of thiyl radical to the vinyl group, demonstrating the usefulness of VCP structure for designing cross-linkable polymers.

Graphical abstract

Polycondensation of diamine bearing a vinylcyclopropane moiety with an acid dichloride proceeded smoothly, affording a novel reactive polyamide bearing vinylcyclopropane moieties in the main chain. The synthesized linear polyamide exhibited much higher thermal resistance compared to the analogous linear polyurea. In addition, the linear polymer underwent cross-linking reaction with a dithiol via ring-opening reactions to produce a cross-linked polymer, suggesting that the introduction of vinylcyclopropane moiety into polymer structure enable an application for polymer reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Douka A, Vouyiouka S, Papaspyridi LM, Papaspyrides CD (2018) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyester amides. Prog Polym Sci 79:1–25. https://doi.org/10.1016/j.progpolymsci.2017.10.001

    Article  CAS  Google Scholar 

  2. Zhang C (2018) Progress in semicrystalline heat-resistant polyamides. E-Polymers 18:373–408. https://doi.org/10.1515/epoly-2018-0094

    Article  CAS  Google Scholar 

  3. Ruiz JAR, Trigo-López M, García FC, García JM (2017) Functional aromatic polyamides. Polymers 9:414. https://doi.org/10.3390/polym9090414

    Article  CAS  Google Scholar 

  4. van Velthoven JLJ, Gootjes L, Noordover BAJ, Meuldijik J (2015) Bio-based amorphous polyamides with tunable thermal properties. Eur Polym J 66:57–66. https://doi.org/10.1016/j.eurpolymj.2015.01.040

    Article  CAS  Google Scholar 

  5. Tunc D, Bouchekif H, Améduri B, Jérôme C, Desbois P, Lecomte P, Carlotti S (2015) Synthesis of aliphatic polyamide bearing fluorinated groups from e-caprolactam and modified cyclic lysine. Eur Polym J 71:575–584. https://doi.org/10.1016/j.eurpolymj.2015.08.030

    Article  CAS  Google Scholar 

  6. García JM, García FC, Serna F, de la Peña JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  CAS  Google Scholar 

  7. Kanazawa H, Higuchi M, Yamamoto K (2006) Synthesis and chemical degradation of thermostable polyamide with imine bond for chemical recycling. Macromolecules 39:138–144. https://doi.org/10.1021/ma0520141

    Article  CAS  Google Scholar 

  8. Yang G, Jikei M, Kakimoto M (1999) Synthesis and properties of hyperbranched aromatic polyamide. Macromolecules 32:2215–2220. https://doi.org/10.1021/ma981590c

    Article  CAS  Google Scholar 

  9. Dai R, Li J, Wang Z (2020) Constructing interlayer to tailor structure and performance of thin-filmcomposite polyamide membranes: a review. Adv Colloid Interface Sci 282:102204. https://doi.org/10.1016/j.cis.2020.102204

    Article  CAS  PubMed  Google Scholar 

  10. Chowdhury MR, Steffes J, Huey BD, McCutcheon JR (2018) 3D printed polyamide membranes for desalination. Science 361:682–686. https://doi.org/10.1126/science.aar2122

    Article  CAS  PubMed  Google Scholar 

  11. Maiatska O, Omeis J, Ritter H (2016) One-step approach to amino-functionalized semiaromatic polyamides: modification and cross-linking. Macromolecules 49:737–741. https://doi.org/10.1021/acs.macromol.5b02368

    Article  CAS  Google Scholar 

  12. Tunc D, Coz CL, Alexandre M, Desbois P, Lecomte P, Carlotti S (2014) Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules 47:8247–8254. https://doi.org/10.1021/ma502083p

    Article  CAS  Google Scholar 

  13. Okamoto S, Sudo A, Endo T (2019) Radical ring-opening polymerization behavior of 1,1-dicyano-2-vinylcyclopropane and its copolymerization with 1-cyano-1-ester-2-vinylcyclopropane. J Polym Sci Part A Polym Chem 57:1723–1729. https://doi.org/10.1002/pola.29441

    Article  CAS  Google Scholar 

  14. Takahashi N, Sudo A, Endo T (2017) Isolation of epimers in the synthesis of vinylcyclopropane bearing two alanine moieties and their radical ring-opening polymerization. Macromolecules 50:5679–5686. https://doi.org/10.1021/acs.macromol.6b02778

    Article  CAS  Google Scholar 

  15. Contreras PP, Tyagi P, Agarwal S (2015) Low volume shrinkage of polymers by photopolymerization of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropanes. Polym Chem 6:2297–2304. https://doi.org/10.1039/c4py01705f

    Article  CAS  Google Scholar 

  16. Ata S, Mal D, Singha NK (2013) Copper catalyzed ring opening copolymerization of a vinyl cyclopropane and methyl methacrylate. RSC Adv 3:14486–14494. https://doi.org/10.1039/c3ra23291c

    Article  CAS  Google Scholar 

  17. Sanda F, Endo T (2001) Radical ring-opening polymerization. J Polym Sci Part A Polym Chem 39:265–276

    Article  CAS  Google Scholar 

  18. Cho I (2000) New ring-opening polymerizations for copolymers having controlled microstructures. Prog Polym Sci 25:1043–1087

    Article  CAS  Google Scholar 

  19. Sanda F, Takata T, Endo T (1994) Radical copolymerization of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropane and methyl methacrylate accompanying ring opening and cyclization. Macromolecules 27:3982–3985

    Article  CAS  Google Scholar 

  20. Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49:1540–1573. https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  21. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol–ene chemistry. J Polym Sci Part A Polym Chem 48:743–750. https://doi.org/10.1002/pola.23824

    Article  CAS  Google Scholar 

  22. Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: chemistry of the past with promise for the future. J Polym Sci Part A Polym Chem 42:5302–5338. https://doi.org/10.1002/pola.20366

    Article  CAS  Google Scholar 

  23. Okazaki T, Sanda F, Endo T (1996) Synthesis and radical ring-opening polymerization behavior of vinylcyclopropane bearing six-membered cyclic acetal moiety. J Polym Sci Part A Polym Chem 34:2029–2035

    Article  CAS  Google Scholar 

  24. Cho I, Ahn K-D (1979) Polymerization of substituted cyclopropanes. I. Radical polymerization of 1,1-disubstitued 2-vinylcyclopropanes. J Polym Sci Polym Chem Ed 17:3169–3182

    Article  CAS  Google Scholar 

  25. Sanda F, Komiya T, Endo T (1998) Radical polyaddition-isomerization of bifunctional vinylcyclopropanes with dithiols. Macromol Chem Phys 199:2165–2172

    Article  CAS  Google Scholar 

  26. Okazaki T, Sanda F, Endo T (1997) Radical ring-opening polyaddition of a bifunctional vinylcyclopropane bearing a spiroacetal moiety with dithiols. J Polym Sci Part A Polym Chem 35:2487–2492

    Article  CAS  Google Scholar 

  27. Okamoto S, Sudo A, Endo T (2021) Molecular design and synthesis of crosslinked polyimidesusing radical isomerization of vinylcyclopropane with thiols. J Appl Polym Sci 138:e50529. https://doi.org/10.1002/app.50529

    Article  CAS  Google Scholar 

  28. Okamoto S, Sudo A, Endo T (2020) Synthesis of reactive polyureas bearing vinylcyclopropane moiety in main chain and their radical cross-linking with multifunctional thiols. J Polym Sci 58:1601–1608. https://doi.org/10.1002/pol.20200167

    Article  CAS  Google Scholar 

  29. Yang H, Zhao J, Yan M, Pispas S, Zhang G (2011) Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polym Chem 2:2888–2892. https://doi.org/10.1039/clpy00334h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by JSR Corporation. High-resolution mass analyses of compounds were performed by the Cooperative Research Program of “Network Joint Research Centre for Materials and Devices” and in the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Endo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 317 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, S., Sudo, A. & Endo, T. Synthesis of reactive polyamide bearing vinylcyclopropane moieties in the main chain and its cross-linking reaction. Polym. Bull. 81, 3545–3562 (2024). https://doi.org/10.1007/s00289-023-04881-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04881-8

Keywords

Navigation