Skip to main content
Log in

Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A starch-based adsorbing-flocculating bifunctional material St-A/F is prepared via graft copolymerization with two cationic monomers DMC and DMDAAC, using a safe and clean Fenton initiating system. 13C NMR, XRD, SEM and BET are used in characterization of chemical construction and physicochemical property for the product. St-A/F has double functions of adsorbing and flocculating; it can remove hydro-soluble reactive and direct dyes, and insoluble disperse dyes simultaneously. In adsorption study, the removal ratio (RR) of direct dye 4BS and reactive dye KE-4B were 92.06 and 94.13%, respectively. The adsorption behaviors have higher fitting degree to pseudo-second-order kinetic and Langmuir isothermal model than pseudo-first-order and Freundlich isothermal model. In flocculation study, the RR of St-A/F was recorded above 93.91% to three disperse dyes. St-A/F has significantly increased Zeta potential and isoelectric point (pI 9.08). St-A/F can cause destabilization and aggregation to negatively charged disperse dye particles, via charge neutralization and bridging effects, using its positively charged graft branched chains. St-A/F can simultaneously remove soluble and insoluble pollutants, so it considered to have great advantage in treatment for practical textile printing and dying wastewater with complicated composition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lotito AM, Fratino U, Bergna G, Di Iaconi C (2012) Integrated biological and ozone treatment of printing textile wastewater. Chem Eng J 195:261–269. https://doi.org/10.1016/j.cej.2012.05.006

    Article  CAS  Google Scholar 

  2. Guyer GT, Nadeem K, Dizge N (2016) Recycling of pad-batch washing textile wastewater through advanced oxidation processes and its reusability assessment for Turkish textile industry. J Clean Prod 139:488–494. https://doi.org/10.1016/j.jclepro.2016.08.009

    Article  CAS  Google Scholar 

  3. Asghar A, Raman AAA, Daud W (2015) Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87:826–838. https://doi.org/10.1016/j.jclepro.2014.09.010

    Article  CAS  Google Scholar 

  4. Jiang LL, Li K, Yan DL, Yang MF, Ma L, Xie LZ (2020) Toxicity assessment of 4 Azo dyes in Zebrafish embryos. Int J Toxicol 39(2):115–123. https://doi.org/10.1177/1091581819898396

    Article  CAS  PubMed  Google Scholar 

  5. Manjunath SV, Tripathy BK, Kumar M, Pramod S (2020) Simultaneous degradation of anionic and cationic dyes from multi-dye systems using falling film photoreactor: performance evaluation, kinetic and toxicity analysis. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104486

    Article  Google Scholar 

  6. Wu JJ (2021) The distribution and toxicity evaluation of polycyclic aromatic hydrocarbons in the textile dyeing sludge. Desalin Water Treat 234:222–226. https://doi.org/10.5004/dwt.2021.27628

    Article  CAS  Google Scholar 

  7. Mittal J (2021) Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: a review. J Environ Manag. https://doi.org/10.1016/j.jenvman.2021.113017

    Article  Google Scholar 

  8. Liu J, Wang N, Zhang HL, Baeyens J (2019) Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J Environ Manage 238:473–483. https://doi.org/10.1016/j.jenvman.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Li YX, Cheng BW, Ding CK, Zhang Y (2020) Synthesis of a starch-based sulfonic ion exchange resin and adsorption of dyestuffs to the resin. Int J Biol Macromol 161:561–572. https://doi.org/10.1016/j.ijbiomac.2020.06.017

    Article  CAS  PubMed  Google Scholar 

  10. Wang XH, Jiang CL, Hou BX, Wang YY, Hao C, Wu JB (2018) Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 206:587–596. https://doi.org/10.1016/j.chemosphere.2018.04.183

    Article  CAS  PubMed  Google Scholar 

  11. Kosters R, Du Preez CC, Amelung W (2018) Lignin dynamics in secondary pasture soils of the South African Highveld. Geoderma 319:113–121. https://doi.org/10.1016/j.geoderma.2017.12.028

    Article  CAS  Google Scholar 

  12. Hussain Z, Chang N, Sun JQ, Xiang SM, Ayaz T, Zhang H, Wang HT (2022) Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126778

    Article  PubMed  Google Scholar 

  13. Xia K, Liu X, Wang WW, Yang XZ, Zhang XD (2020) Synthesis of modified starch/polyvinyl alcohol composite for treating textile wastewater. Polymers. https://doi.org/10.3390/polym12020289

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Zhao XL, Kong QM, Wang XJ, Lou T (2022) Preparation of chitosan/DADMAC/lignin terpolymer and its application of dye wastewater flocculation. Polym Bull 79(9):7479–7490. https://doi.org/10.1007/s00289-021-03863-y

    Article  CAS  Google Scholar 

  15. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17(1):195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  CAS  Google Scholar 

  16. Mittal J, Ahmad R, Mariyam A, Gupta VK, Mittal A (2021) Expeditious and enhanced sequestration of heavy metal ions from aqueous environment by papaya peel carbon: a green and low-cost adsorbent. Desalin Water Treat 210:365–376. https://doi.org/10.5004/dwt.2021.26562

    Article  CAS  Google Scholar 

  17. Gupta VK, Agarwal S, Ahmad R, Mirza A, Mittal J (2020) Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite. Int J Biol Macromol 158:1310–1318. https://doi.org/10.1016/j.ijbiomac.2020.05.025

    Article  CAS  Google Scholar 

  18. Yang R, Li HJ, Huang M, Yang H, Li AM (2016) A review on chitosan-based flocculants and their applications in water treatment. Water Res 95:59–89. https://doi.org/10.1016/j.watres.2016.02.068

    Article  CAS  PubMed  Google Scholar 

  19. Das S, Patra P, Singha K, Biswas P, Sarkar S, Pal S (2019) Graft copolymeric flocculant using functionalized starch towards treatment of blast furnace effluent. Int J Biol Macromol 125:35–40. https://doi.org/10.1016/j.ijbiomac.2018.12.026

    Article  CAS  PubMed  Google Scholar 

  20. Du Q, Wei H, Li AM, Yang H (2017) Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Sci Total Environ 601:1628–1637. https://doi.org/10.1016/j.scitotenv.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  21. Fan YF, Picchioni F (2020) Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116350

    Article  PubMed  Google Scholar 

  22. Hu P, Xi ZH, Li Y, Li AM, Yang H (2020) Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124866

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhu F (2017) Barley starch: composition, structure, properties, and modifications. Compr Rev Food Sci Food Saf 16(4):558–579. https://doi.org/10.1111/1541-4337.12265

    Article  CAS  PubMed  Google Scholar 

  24. Razali MAA, Ariffin A (2015) Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: flocculation behavior and mechanism. Appl Surf Sci 351:89–94. https://doi.org/10.1016/j.apsusc.2015.05.080

    Article  CAS  Google Scholar 

  25. Selvanathan V, Yahya R, Shahiduzzaman M, Ruslan MH, Muhammad G, Amin N, Akhtaruzzaman M (2021) Ionic liquid infused starch-cellulose derivative based quasi-solid dye-sensitized solar cell: exploiting the rheological properties of natural polymers. Cellulose 28(9):5545–5557. https://doi.org/10.1007/s10570-021-03854-2

    Article  CAS  Google Scholar 

  26. Witono JR, Noordergraaf IW, Heeres HJ, Janssen L (2012) Graft copolymerization of acrylic acid to cassava starch-evaluation of the influences of process parameters by an experimental design method. Carbohyd Polym 90(4):1522–1529. https://doi.org/10.1016/j.carbpol.2012.07.024

    Article  CAS  Google Scholar 

  27. Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S (2017) Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Biores Technol 242:295–303. https://doi.org/10.1016/j.biortech.2017.03.119

    Article  CAS  Google Scholar 

  28. Liu ZZ, Wei H, Li AM, Yang H (2017) Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant. Water Res 118:160–166. https://doi.org/10.1016/j.watres.2017.04.032

    Article  CAS  PubMed  Google Scholar 

  29. Blennow A (2018) Starch bioengineering. Starch-Starke 70:1–2. https://doi.org/10.1002/star.201870006

    Article  CAS  Google Scholar 

  30. Chen LW, Zhu YY, Cui YM, Dai R, Shan ZH, Chen H (2021) Fabrication of starch-based high-performance adsorptive hydrogels using a novel effective pretreatment and adsorption for cationic methylene blue dye: behavior and mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126953

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haroon M, Wang L, Yu HJ, Ullah RS, Zain Ul A, Khan RU, Chen Q, Liu J (2018) Synthesis of carboxymethyl starch-g-polyvinylpyrolidones and their properties for the adsorption of Rhodamine 6G and ammonia. Carbohyd Polym 186:150–158. https://doi.org/10.1016/j.carbpol.2018.01.052

    Article  CAS  Google Scholar 

  32. Zhou HJ, Zhou L, Yang XY (2018) Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: Through response surface methodology. Int J Biol Macromol 118:1431–1437. https://doi.org/10.1016/j.ijbiomac.2018.06.155

    Article  CAS  PubMed  Google Scholar 

  33. Wang ZH, Zhao HQ, Qi HB, Liu XY, Liu Y (2019) Free radical behaviours during methylene blue degradation in the Fe2+/H2O2 system. Environ Technol 40(9):1138–1145. https://doi.org/10.1080/09593330.2017.1417488

    Article  CAS  PubMed  Google Scholar 

  34. Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A (2021) Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials (Basel) 11:11. https://doi.org/10.3390/nano11113008

    Article  CAS  Google Scholar 

  35. Lin Q, Qian S, Li C, Pan H, Wu Z, Liu G (2012) Synthesis, flocculation and adsorption performance of amphoteric starch. Carbohydr Polym 90(1):275–283. https://doi.org/10.1016/j.carbpol.2012.05.035

    Article  CAS  PubMed  Google Scholar 

  36. Simanaviciute D, Klimaviciute R, Rutkaite R (2017) Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups. Int J Biol Macromol 95:788–795. https://doi.org/10.1016/j.ijbiomac.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  37. Sengupta A, Linehan AR, Iovine PM (2016) Impact of starch content on protein adsorption characteristics in amphiphilic hybrid graft copolymers. Int J Biol Macromol 82:256–263. https://doi.org/10.1016/j.ijbiomac.2015.09.038

    Article  CAS  PubMed  Google Scholar 

  38. Zhu F (2017) NMR spectroscopy of starch systems. Food Hydrocolloids 63:611–624. https://doi.org/10.1016/j.foodhyd.2016.10.015

    Article  CAS  Google Scholar 

  39. Wu YY, Jiang XC, Ma JY, Wen JB, Liu S, Liu HX, Zheng HL (2021) Low-pressure UV-initiated synthesis of cationic starch-based flocculant with high flocculation performance. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118379

    Article  PubMed  Google Scholar 

  40. Mishra S, Sinha S, Dey KP, Sen G (2014) Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohyd Polym 99:462–468. https://doi.org/10.1016/j.carbpol.2013.08.047

    Article  CAS  Google Scholar 

  41. Zhang H, Wang PL, Zhang Y, Cheng BW, Zhu RY, Li F (2020) Synthesis of a novel arginine-modified starch resin and its adsorption of dye wastewater. RSC Adv 10(67):41251–41263. https://doi.org/10.1039/d0ra05727d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai HM, Chen GJ, Peng CY, Xu LY, Zhang ZZ, Ke F, Wan XC (2015) Enhanced fluoride removal by loading Al/Zr onto carboxymethyl starch sodium: synergistic interactions between Al and Zr. RSC Adv 5(123):101819–101825. https://doi.org/10.1039/c5ra18167d

    Article  CAS  Google Scholar 

  43. Xu LY, Chen GJ, Peng CY, Qiao HH, Ke F, Hou RY, Li DX, Cai HM, Wan XC (2017) Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions. Carbohyd Polym 160:82–89. https://doi.org/10.1016/j.carbpol.2016.12.052

    Article  CAS  Google Scholar 

  44. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  45. Sujka M (2017) Ultrasonic modification of starch - Impact on granules porosity. Ultrason Sonochem 37:424–429. https://doi.org/10.1016/j.ultsonch.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  46. Liu YZ, Zheng HL, An YY, Ren J, Zheng XY, Zhao C, Zhang SX (2019) Ultrasound-assisted synthesis of the beta-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance: role of beta-cyclodextrin. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.115735

    Article  Google Scholar 

  47. Tewari K, Singhal G, Arya RK (2018) Adsorption removal of malachite green dye from aqueous solution. Rev Chem Eng 34(3):427–453. https://doi.org/10.1515/revce-2016-0041

    Article  CAS  Google Scholar 

  48. d’Halluin M, Ru-Barrull J, Bretel G, Labrugere C, Le Grognec E, Felpin FX (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. Acs Sustain Chem Eng 5(2):1965–1973. https://doi.org/10.1021/acssuschemeng.6b02768

    Article  CAS  Google Scholar 

  49. Heshmati H, Torab-Mostaedi M, Gilani HG, Heydari A (2015) Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desalin Water Treat 55(4):1076–1087. https://doi.org/10.1080/19443994.2014.922495

    Article  CAS  Google Scholar 

  50. Mokhtari N, Afshari M, Dinari M (2020) Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal. Polymer. https://doi.org/10.1016/j.polymer.2020.122430

    Article  Google Scholar 

  51. Liu XQ, Zhang YY, Liu Y, Zhang TA (2023) Magnetic red mud/chitosan based bionanocomposites for adsorption of Cr(VI) from aqueous solutions: synthesis, characterization and adsorption kinetics. Polym Bull 80(2):2099–2118. https://doi.org/10.1007/s00289-022-04137-x

    Article  CAS  Google Scholar 

  52. Hao LP, Gao WY, Yan S, Niu MH, Liu GS, Hao HS (2020) Functionalized diatomite/oyster shell powder doped electrospun polyacrylonitrile submicron fiber as a high-efficiency adsorbent for removing methylene blue from aqueous solution: thermodynamics, kinetics and isotherms. J Mol Liquids. https://doi.org/10.1016/j.molliq.2019.112022

    Article  Google Scholar 

  53. Ferfera-Harrar H, Benhalima T, Sadi A (2022) Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of Basic Red 46 textile dye. Polym Bull 79(8):6141–6172. https://doi.org/10.1007/s00289-021-03795-7

    Article  CAS  Google Scholar 

  54. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  PubMed  Google Scholar 

  55. Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 92(6):489–508. https://doi.org/10.1016/j.psep.2014.04.010

    Article  CAS  Google Scholar 

  56. Wu H, Yang R, Li RH, Long C, Yang H, Li AM (2015) Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology. Environ Sci Pollut Res 22(17):13038–13048. https://doi.org/10.1007/s11356-015-4547-y

    Article  CAS  Google Scholar 

  57. Hansel PA, Riefler RG, Stuart BJ (2014) Efficient flocculation of microalgae for biomass production using cationic starch. Algal Res-Biomass Biofuels Bioprod 5:133–139. https://doi.org/10.1016/j.algal.2014.07.002

    Article  Google Scholar 

  58. Kim TH, Park C, Yang JM, Kim S (2004) Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. J Hazard Mater 112:95–103. https://doi.org/10.1016/j.jhazmat.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  59. Chang YJ, Hu ZQ, Wang PZ, Zhou J (2021) Synthesis, characterization, and flocculation performance of cationic starch nanoparticles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118337

    Article  PubMed  Google Scholar 

  60. Huang M, Liu ZZ, Li AM, Yang H (2017) Dual functionality of a graft starch flocculant: flocculation and antibacterial performance. J Environ Manage 196:63–71. https://doi.org/10.1016/j.jenvman.2017.02.078

    Article  CAS  PubMed  Google Scholar 

  61. Wei CY, Huang Y, Liao Q, Xia A, Zhu X, Zhu XQ (2019) Adsorption thermodynamic characteristics of Chlorella vulgaris with organic polymer adsorbent cationic starch: Effect of temperature on adsorption capacity and rate. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122056

    Article  PubMed  Google Scholar 

  62. Wu H, Liu ZZ, Li AM, Yang H (2017) Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 174:200–207. https://doi.org/10.1016/j.chemosphere.2017.01.120

    Article  CAS  PubMed  Google Scholar 

  63. Arayaphan J, Maijan P, Boonsuk P, Chantarak S (2021) Synthesis of photodegradable cassava starch-based double network hydrogel with high mechanical stability for effective removal of methylene blue. Int J Biol Macromol 168:875–886. https://doi.org/10.1016/j.ijbiomac.2020.11.166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors would like to express their sincere gratitude to China National Key R&D Program (2019YFC0408400).

Author information

Authors and Affiliations

Authors

Contributions

Hao Zhang contributed to conceptualization, reviewing and editing. Yaoyao Zheng contributed to writing—original draft and methodology. Haitao Wang contributed to reviewing and editing. Na Chang contributed to supervision and funding.

Corresponding author

Correspondence to Na Chang.

Ethics declarations

Conflicts of interest

All authors approved the manuscript and this submission. The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zheng, Y., Wang, H. et al. Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater. Polym. Bull. 81, 2777–2800 (2024). https://doi.org/10.1007/s00289-023-04864-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04864-9

Keywords

Navigation