Skip to main content
Log in

Hydrophilic matrix system coated by polyvinyl acetate emulsion versus calcium alginate for sustained acetylsalicylic acid release

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Maize starch, polyvinyl alcohol, glucose, and magnesium stearate are used as tablet excipients, acetylsalicylic acid as probe, polyvinyl acetate, and calcium alginate as protective membranes. By changing the proportions of the excipients, the nature and the thickness of the protective membrane, it was possible to optimize the formulation of a controlled release tablet. The mechanism and the kinetics of release of the active ingredient are evaluated using kinetic models: zero order, Higuchi, first order, Hixson–Crowell and Krosmeyer–Peppas. The representation of the released quantities using Krosmeyer–Peppas seems to be the most appropriate to describe the release mechanism (R2 ~ 1). The k and n values, Krosmeyer–Peppas, indicate that drug release is complex. The release rate of the AI is controlled by the erosion of the membrane and the relaxation of the chains of polymers constituting it. The solubility parameters (δ), according to Hansen, of the hydroxylated ingredients, predict compatibility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Efentakis M, Politis S (2006) Comparative evaluation of various structures in polymer controlled drug delivery systems and the effect of their morphology and characteristics on drug release. Eur Polym J 42:1183–1195

    Article  CAS  Google Scholar 

  2. Hu Q, Luo Y (2018) Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 120:775–782. https://doi.org/10.1016/J.IJBIOMAC.2018.08.152

    Article  CAS  PubMed  Google Scholar 

  3. Araújo F, das Neves J, Martins JP et al (2017) Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Prog Mater Sci 89:306–344. https://doi.org/10.1016/J.PMATSCI.2017.05.001

    Article  Google Scholar 

  4. Banerjee A, Qi J, Gogoi R et al (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176–185. https://doi.org/10.1016/J.JCONREL.2016.07.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choi HJ, Kim MC, Kang SM, Montemagno CD (2013) The osmotic stress response of split influenza vaccine particles in an acidic environment. Arch Pharmacal Res 3712(37):1607–1616. https://doi.org/10.1007/S12272-013-0257-5

    Article  Google Scholar 

  6. Mittal B (2017) Pharmaceutical Unit Operations. How to dev robust solid oral dos forms from concept to post-approval pp. 69–95

  7. Jain S, Jain A, Jain A et al (2016) (2016) Development and evaluation of film coated aceclofenac and chlorzoxazone tablet with enhanced dissolution rate. J Pharm Investig 465(46):467–474. https://doi.org/10.1007/S40005-016-0238-Z

    Article  Google Scholar 

  8. Mehta RY, Missaghi S, Tiwari SB, Rajabi-Siahboomi AR (2014) Application of ethylcellulose coating to hydrophilic matrices: a strategy to modulate drug release profile and reduce drug release variability. AAPS PharmSciTech 15:1049–1059. https://doi.org/10.1208/S12249-014-0128-5/TABLES/6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang S, Wang X, Jia J, Li P (2016) Release property study on the novel divalproex sodium enteric-coated capsules. Saudi Pharm J 24:245–249. https://doi.org/10.1016/J.JSPS.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SH, Bajracharya R, Min JY et al (2020) Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharm 12:68. https://doi.org/10.3390/PHARMACEUTICS12010068

    Article  CAS  Google Scholar 

  11. Seo KS, Bajracharya R, Lee SH, Han HK (2020) Pharmaceutical application of tablet film coating. Pharmaceutics 12:1–20. https://doi.org/10.3390/PHARMACEUTICS12090853

    Article  Google Scholar 

  12. Marijnissen WJCM, Van Osch GJVM, Aigner J et al (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 23:1511–1517. https://doi.org/10.1016/S0142-9612(01)00281-2

    Article  CAS  PubMed  Google Scholar 

  13. Park H, Choi B, Hu J, Lee M (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9:4779–4786. https://doi.org/10.1016/J.ACTBIO.2012.08.033

    Article  CAS  PubMed  Google Scholar 

  14. Freyman TM, Yannas IV, Yokoo R, Gibson LJ (2001) Fibroblast contraction of a collagen-GAG matrix. Biomaterials 22:2883–2891. https://doi.org/10.1016/S0142-9612(01)00034-5

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Wang YJ, Wang Y et al (2015) Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater 25:268–283. https://doi.org/10.1016/J.ACTBIO.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  16. Lenaghan SC, Serpersu K, Xia L et al (2011) A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering. Bioinspir Biomim. https://doi.org/10.1088/1748-3182/6/4/046009

    Article  PubMed  Google Scholar 

  17. de Oliveira Cardoso VM, Stringhetti Ferreira Cury B, Evangelista RC, Daflon Gremião MP (2017) Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. J Mech Behav Biomed Mater 65:317–333. https://doi.org/10.1016/J.JMBBM.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  18. Ratnayake W, Jackson D (2008) Thermal behavior of resistant starches RS 2, RS 3, and RS 4. J Food Sci 73(5):356–366

    Article  Google Scholar 

  19. Sharma A, Yadav B, Ritika (2008) Resistant starch: physiological roles and food applications. Food Rev Int 24: 193–234

  20. Augst A, Kong H, Mooney D (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  PubMed  Google Scholar 

  21. Lee K, Mooney D (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tiwari S, Dinunzio J, Rajabi-Siahboomi A (2011) Drug polymer matrices for extended release. Springer, New York, pp 131–160

    Google Scholar 

  23. Ensslin S, Moll K, Haefele-Racin T, Mäder K (2009) Safety and robustness of coated pellets: self-healing film properties and storage stability. Pharm Res 26:1534–1543. https://doi.org/10.1007/s11095-009-9866-6

    Article  CAS  PubMed  Google Scholar 

  24. Vyskocilova E, Lusticka I, Paterova I et al (2014) Modified MCM-41 as a drug delivery system for acetylsalicylic acid. Solid State Sci 38:85–89

    Article  CAS  Google Scholar 

  25. HealthCare. ED for the Q of M& (2007) European pharmacopoeia/European Directorate for the Quality of Medicines & HealthCare

  26. Fertah M, Belfkira A, Dahmane E et al (2014) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.05.003

    Article  Google Scholar 

  27. Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718

    Article  CAS  Google Scholar 

  28. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York, pp 390–412

    Google Scholar 

  29. Essaghraoui A, Khatib K, Hamdaoui B et al (2021) Handsheet coated by polyvinyl acetate as a drug release system. J Pharm Innov 2021:1–11. https://doi.org/10.1007/S12247-021-09548-3

    Article  Google Scholar 

  30. Ritger P, Peppas N (1987) Simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  31. Wang N, Sun H, Dong J, Ouyang D (2021) PharmDE: a new expert system for drug-excipient compatibility evaluation. Int J Pharm 607:120962. https://doi.org/10.1016/j.ijpharm.2021.120962

    Article  CAS  PubMed  Google Scholar 

  32. Dave V, Haware R V., Sangave NA, et al (2015) Drug-excipient compatibility studies in formulation development: current trends and techniques

  33. Sin LT, Rahman WAWA, Rahmat AR, Samad AA (2010) Computational modeling and experimental infrared spectroscopy of hydrogen bonding interactions in polyvinyl alcohol–starch blends. Polymer (Guildf) 51:1206–1211. https://doi.org/10.1016/J.POLYMER.2010.01.021

    Article  CAS  Google Scholar 

  34. Hansen CM (2007) Methods of characterization - surfaces. Hansen Solubility Parameters A Users Handbook, Second Ed 113–123. https://doi.org/10.1201/9781420006834/HANSEN-SOLUBILITY-PARAMETERS-CHARLES-HANSEN

  35. Belfkira A, Montheard J-P (1994) Solubility parameters of poly(4-substituted α-acetoxystyrenes) and alternating copolymers of vinylidene cyanide with substituted styrenes. J Appl Polym Sci 51:1849–1859. https://doi.org/10.1002/APP.1994.070511102

    Article  CAS  Google Scholar 

  36. Imam SH, Cinelli P, Gordon SH, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly(vinyl alcohol), cornstarch, and lignocellulosic fiber. J Polym Environ 13:47–55. https://doi.org/10.1007/S10924-004-1215-6/METRICS

    Article  CAS  Google Scholar 

  37. Agnes E, Ortega G (2003) Modelos matemáticos e físico-química da difusão. Cad Farm 19:9–19

    Google Scholar 

  38. Clare K, Algin (1993) In: Whistler RL, BeMiller JN (eds) Industrial Gums, 3rd edition, Academic Press: New York

  39. Sriamornsak P, Kennedy R (2006) Development of polysaccharide gel coated pellets for oral administration. 2 Calcium alginate. Eur J Pharm Sci 29:139–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Ana Isabel Ferreira Barbosa, Faculty of pharmacy, University of porto for checking the linguistic aspect of this paper.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazzaq Essaghraoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essaghraoui, A., Belfkira, A. & Azeroual, S. Hydrophilic matrix system coated by polyvinyl acetate emulsion versus calcium alginate for sustained acetylsalicylic acid release. Polym. Bull. 81, 2429–2445 (2024). https://doi.org/10.1007/s00289-023-04861-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04861-y

Keywords

Navigation