Skip to main content
Log in

Synthesis and characterization of liposomal nanoparticles coated with chitosan–folate for efficient delivery of lawsone to pancreatic cancer cells

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this survey, lawsone as natural bioactive compound encapsulate liposomal nanoparticle coated with chitosan–folate (L-LNPs-CF) has been developed as novel delivery system. The dynamic light scattering (DLS), zeta potential (ZP), field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR) analysis were applied to assess the physiochemical characteristic. Furthermore, the potent antioxidant, anticancer and proapoptotic activities were uncovered by cell viability, acridine orange/propidium iodide (AO/PI) staining and flow cytometry. Meanwhile, the real-time PCR technique has been carried out to determine the gene profiling involved in cancer including caspase 3, 9 and Bax. The obtained results exhibited that L-LNPs-CF had 111.98 ± 2.15 nm in size with spherical structure and surface charge of 20.89 mV. The lawsone encapsulation efficiency was 83.8% in nanostructure. Apart from that, the cellular and molecular experiment revealed that L-LNPs-CF had strong free radical scavenging using DPPH and ABTS with respective values of 40.9%, 84.14% and significantly (p < 0.05) inhibited the cell proliferation of pancreatic cell (IC50: 171.94 µg/mL). Intriguingly, L-LNPs-CF notably up-regulated the caspase 3, 9 and bax genes as the key apoptotic genes. Outcome demonstrated that L-LNPs-CF enhances cellular uptake and could be an impressive therapeutic system for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kamisawa T, Wood LD, Itoi T, Takaori K (2016) Pancreatic cancer. Lancet 388:73–85

    Article  CAS  PubMed  Google Scholar 

  2. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  CAS  PubMed  Google Scholar 

  3. Christenson ES, Jaffee E, Azad NS (2020) Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 21:135

    Article  Google Scholar 

  4. Adsay N (2010) Intraductal neoplasms of the pancreas. WHO classification of tumours of the digestive system pp. 304–313

  5. Hruban R (2010) Ductal adenocarcinoma of the pancreas. WHO classification of digestive tumors pp. 281–290

  6. Solomon S, Das S, Brand R, Whitcomb DC (2012) Inherited pancreatic cancer syndromes. Cancer J (Sudbury, Mass) 18:485

    Article  CAS  Google Scholar 

  7. Rustgi AK (2014) Familial pancreatic cancer: genetic advances. Genes Dev 28:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP (2010) Update on familial pancreatic cancer. Adv Surg 44:293

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicine 5:93

    CAS  Google Scholar 

  10. Charoensup R, Duangyod T, Palanuvej C, Ruangrungsi N (2017) Pharmacognostic specifications and lawsone content of Lawsonia inermis leaves. Pharmacognosy research 9:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh DK, Luqman S, Mathur AK (2015) Products Lawsonia inermis L.-A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: a review. Ind Crops Prod 65:269

    Article  CAS  Google Scholar 

  12. Bernaoui CR, Bendraoua A, Zaoui F, Gallardo JJ, Navas J, Boudia RA, Djediai H, el Houda GN, Adjdir M (2022) Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater Chem Phys 292:126793

    Article  CAS  Google Scholar 

  13. Zaoui F, Sebba FZ, Liras M, Sebti H, Hachemaoui M, Mokhtar A, Beldjilali M, Bounaceur B, Boukoussa B (2021) Ultrasonic preparation of a new composite poly (GMA)@ Ru/TiO2@ Fe3O4: application in the catalytic reduction of organic pollutants. Mater Chem Phys 260:124146

    Article  CAS  Google Scholar 

  14. Luo Y, Wang Q, Zhang Y (2020) Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: a perspective on the past, present, and future. J Agric Food Chem 68:12993

    Article  CAS  PubMed  Google Scholar 

  15. Donsì F, Sessa M, Mediouni H, Mgaidi A, Ferrari G (2011) Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Proc Food Sci 1:1666

    Article  Google Scholar 

  16. Zaoui, F, Hachemaoui M, Sebba FZ, Mokhtar A, Bounaceur B, Ould Kada S, Cherifi Z, Boukoussa B (2022) Ultrasonic preparation of new nanocomposites poly (GMA)@ amino-functionalized Fe3O4: structural, morphological and thermal properties. Polym. Bull 1–18

  17. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM (2023) Nutrition Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 1–14.

  19. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 20:100397

    Article  CAS  Google Scholar 

  20. Boughrara L, Sebba FZ, Sebti H, Choukchou-Braham E, Bounaceur B, Kada SO, Zaoui F (2021) Removal of Zn (II) and Ni (II) heavy metal ions by new alginic acid-ester derivatives materials. Carbohydr Polym 272:118439

    Article  CAS  PubMed  Google Scholar 

  21. Seyedabadi MM, Rostami H, Jafari SM, Fathi M (2021) Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Biosci 40:100857

    Article  CAS  Google Scholar 

  22. Azzazy HMES, Fahmy SA, Mahdy NK, Meselhy MR, Bakowsky U (2021) Chitosan-coated PLGA nanoparticles loaded with Peganum harmala alkaloids with promising antibacterial and wound healing activities. J Nanomater 11:2438

    Article  CAS  Google Scholar 

  23. de Oliveira SJ, Fernandes RS, Oda CMR, Ferreira TH, Botelho AFM, Melo MM, de Miranda MC, Gomes DA, Cassali GD, Townsend DM (2019) Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed Pharmacother 118:109323

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rafiee Z, Barzegar M, Sahari MA, Maherani B (2017) Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chem 220:115

    Article  CAS  PubMed  Google Scholar 

  25. Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B (2022) Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. J Biomater Sci Polym Ed 33:1289

    Article  CAS  PubMed  Google Scholar 

  26. Asgari HT, Es-haghi A, Karimi E (2021) Anti-angiogenic, antibacterial, and antioxidant activities of nanoemulsions synthesized by Cuminum cyminum L. tinctures. J Food Meas Charact 15:3649

    Article  Google Scholar 

  27. Liu C, Zhang S, McClements DJ, Wang D, Xu Y (2019) Design of astaxanthin-loaded core–shell nanoparticles consisting of chitosan oligosaccharides and poly (lactic-co-glycolic acid): enhancement of water solubility, stability, and bioavailability. J Agric Food Chem 67:5113

    Article  CAS  PubMed  Google Scholar 

  28. Solghi S, Emam-Djomeh Z, Fathi M, Farahani F (2020) The encapsulation of curcumin by whey protein: assessment of the stability and bioactivity. J Food Process Eng 43:e13403

    Article  CAS  Google Scholar 

  29. Sarabandi K, Jafari SM, Mohammadi M, Akbarbaglu Z, Pezeshki A, Heshmati MK (2019) Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: stability and characterization. Food Hydrocoll 96:442

    Article  CAS  Google Scholar 

  30. Majiene D, Kuseliauskyte J, Stimbirys A, Jekabsone A (2019) Comparison of the effect of native 1, 4-naphthoquinones plumbagin, menadione, and lawsone on viability, redox status, and mitochondrial functions of C6 glioblastoma cells. Nutrients 11:1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakthiguru N, Sithique MA (2020) Preparation and in vitro biological evaluation of lawsone loaded O-carboxymethyl chitosan/zinc oxide nanocomposite for wound-healing application. ChemistrySelect 5:2710

    Article  CAS  Google Scholar 

  32. Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG (2014) Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol 7:1149

    Article  CAS  Google Scholar 

  33. Rajpoot K, Jain SK (2018) Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol 46:1236

    Article  CAS  PubMed  Google Scholar 

  34. Jy W, Wang Y, Meng X (2016) Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett 11:1

    Google Scholar 

  35. Sabzichi M, Samadi N, Mohammadian J, Hamishehkar H, Akbarzadeh M, Molavi O (2016) Sustained release of melatonin: a novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf B Biointerfaces 145:64

    Article  CAS  PubMed  Google Scholar 

  36. Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR (2012) Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol 3: 65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors very much appreciate the support provided by the Islamic Azad University, Mashhad, Iran, in conducting the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Homayouni Tabrizi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeeni, N.B., Tabrizi, M.H., Karimi, E. et al. Synthesis and characterization of liposomal nanoparticles coated with chitosan–folate for efficient delivery of lawsone to pancreatic cancer cells. Polym. Bull. 81, 2671–2683 (2024). https://doi.org/10.1007/s00289-023-04860-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04860-z

Keywords

Navigation