Skip to main content
Log in

Conjugate electrospun photochromic adjustable magnetic bifunctional Janus-structure nanofibers array

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Using conjugate electrospinning technology to prepare Janus-structure nanofiber array and endow it with multifunctional characteristics is a very meaningful research topic. Here, photochromic adjustable magnetic bifunctional {[Eu(BA)3phen (EBP) + Tb(BA)3phen (TBP)]/polyvinylpyrrolidone (PVP)}//[Fe3O4/PVP] Janus-structure nanofiber array (defined as PM-JNA) is constructed by conjugate electrospinning. Janus-structure nanofibers are arranged in a micro-orientation, and most nanofibers have a special Janus structure. This structure confines the magnetic material and fluorescent material in two nanofibers, respectively, reduces the influence of magnetic material on fluorescence intensity, and significantly improves the fluorescence performance of the specimen. The using of conjugate electrospinning solves the problem of mutual diffusion of spinning liquid in the spinneret in parallel electrospinning and improves the separation efficiency of fluorescent substances and magnetic substances. Adjustable magnetic and luminous colors can be obtained by changing the contents of Fe3O4, EBP and TBP. Janus-structure nanofibers have been widely used in biological monitoring, medical imaging, nanodevices and multifunctional materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang YG, Li GP, Zhang T, Song ZH, Wang H, Zhang ZP, Jiang Y (2018) Phosphine-free route to size-adjustable CdSe and CdSe/CdS core-shell quantum dots for white-light-emitting diodes. J Nanosci Nanotechnol 18:1864–1869

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZY, Hou XF, Liu YA, Hui Z, Huang ZH, Fang MH, Wu XW (2017) Luminescence properties and energy transfer behavior of colour-tunable white-emitting Sr4Al14O25 phosphors with co-doping of Eu2+, Eu3+ and Mn4+. RSC Adv 8:52995–53001

    Article  Google Scholar 

  3. Li ZC, Zhou DC, Yang Y, Ren P, Qiu JB (2017) Adjustable multicolor up-energy conversion in light-luminesce in Tb3+/Tm3+/Yb3+ co-doped oxyfluoriffde glass-ceramics containing Ba2LaF7 nanocrystals. Sci Rep 7:6518

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yakoubi A, Mrad M, Chaabane TB, Rinnert H, Balan L, Medjahdi G, Schneider R (2018) Aqueous synthesis of highly fluorescent and color-tunable Ag+-doped CdxZn1xS quantum dots. J Alloys Compd 764:591–598

    Article  CAS  Google Scholar 

  5. Tian WG, Zhang JM, Yu J, Wu J, Zhang J, He JS, Wang FS (2017) Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv Funct Mater 28:1703548

    Article  Google Scholar 

  6. Maeda C, Todaka T, Ueda T, Ema T (2016) Color-tunable solid-state fluorescence emission from carbazole-based BODIPYs. Chem Eur J 22:7508–7513

    Article  CAS  PubMed  Google Scholar 

  7. Tian LL, Zhang W, Yang B, Lu P, Zhang M, Lu D, Ma YG, Shen JC (2005) Zinc(II)-induced color-tunable fluorescence emission in the π-conjugated polymers composed of the bipyridine unit: a way to get white-light emission. J Phys Chem B 109:6944–6947

    Article  CAS  PubMed  Google Scholar 

  8. Shen P, Uesawa N, Inasawa S, Yamaguchi Y (2010) Stable and color-tunable fluorescence from silicon nanoparticles formed by single-step plasma assisted decomposition of SiBr4. J Mater Chem 20:1669–1675

    Article  CAS  Google Scholar 

  9. Cheng YZ, Shen CY, Shen LL, Xiang WD, Liang XJ (2018) Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl Mater Interfaces 10:21434–21444

    Article  CAS  PubMed  Google Scholar 

  10. Bi F, Gai GQ, Dong XT, Xiao SS, Liu GX, Zhao L, Wang LY (2017) Facile electrospinning preparation and luminescence performance of color adjustable Y3Al5O12:Dy3+ nanobelts. J Mater Sci Mater Electron 28:10427–10432

    Article  CAS  Google Scholar 

  11. Yang L, Shao H, Hong F, Qi HN, Xie YR, Yu WS, Dong XT, Li D, Ma QL, Liu GX (2022) Electrospun polyfunctional quasi-tricolor nanoribbon and array. Eur Polym J 178:111492

    Article  CAS  Google Scholar 

  12. Vijayalakshmi V, Sadanandan B, Raghu AV (2022) Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. Results Chem 4:100484

    Article  CAS  Google Scholar 

  13. Shanmugan S, Gorjian S, Elsheikh AH, Essa FA, Omara ZM, Raghu AV (2021) Investigation into the effects of SiO2/TiO2 nanolayer on the thermal performance of solar box type cooker. Energy Sources A Recov Util Environ Eff 43:2724–2737

    Article  CAS  Google Scholar 

  14. Madhavi J, Reddy KR, Reddy CV, Raghu AV (2021) Facile synthesis of Ni-doped ZnS-CdS composite and their magnetic and photoluminescence properties. J Environ Chem Eng 9:106335

    Article  CAS  Google Scholar 

  15. Qi HN, Yang L, Tang XH, Xie YR, Ma QL, Yu WS, Dong XT, Li D, Liu GX, Wang JX (2022) Electrospun light stimulus response-enhanced anisotropic conductive Janus membrane with up/down-conversion luminescence. Mater Chem Front 6:2219–2232

    Article  CAS  Google Scholar 

  16. Qi HN, Wang GY, Ma QL, Li D, Dong XT, Yu WS, Wang JX, Liu GX, Zhang XJ (2022) Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. J Mater Sci Mater Electron 33:4438–4449

    Article  CAS  Google Scholar 

  17. Qin Z, Wang QT, Wang CZ, Xu DF, Ma GP, Pan K (2019) Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-steep energy transfer. Mater Chem C 7:1065–1071

    Article  CAS  Google Scholar 

  18. Kumar S, Baruah S, Puzari A (2020) Poly(p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application. Polym Bull 77:441–457

    Article  CAS  Google Scholar 

  19. Dong KJ, Yang ZK, Chen JW, Shi DJ, Chen MQ (2021) Oxygen vacancy-Fe2O3@polyaniline composites directly grown on carbon cloth as a high stable electrode for symmetric supercapacitors. J Inorg Organomet Polym Mater 31:3894–3903

    Article  CAS  Google Scholar 

  20. Shao H, Ma QL, Dong XT, Yu WS, Yang M, Yang Y, Wang JX, Liu GX (2015) Novel flexible belt-shaped coaxial microcables with tunable multicolor luminescence, electrical conductivity and magnetism. Phys Chem Chem Phys 17:21845–21855

    Article  CAS  PubMed  Google Scholar 

  21. Fan LB, Ma QL, Tian J, Dan L, Xi X, Dong XT, Yu WS, Wang JX, Liu GX (2018) Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence. J Mater Sci 53:2290–2302

    Article  CAS  Google Scholar 

  22. Qin Z, Wang QT, Wang CZ, Xu DF, Ma GP, Pan K (2019) Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-steep energy transfer. J Mater Chem C 7:1065–1071

    Article  CAS  Google Scholar 

  23. Cong S, Guo F (2019) Janus nanofibrous membranes for desalination by air gap membrane distillation. ACS Appl Polym Mater 1:3443–3451

    Article  CAS  Google Scholar 

  24. Ji X, Li R, Liu GM, Jia WY, Sun ML, Liu Y, Luo YG, Cheng ZQ (2021) Phase separation-based electrospun Janus nanofibers loaded with rana Chensinensis skin peptides/silver nanoparticles for wound healing. Mater Des 207:109864

    Article  CAS  Google Scholar 

  25. Yang L, Ma QL, Xi X, Li D, Liu JY, Dong XT, Yu WS, Wang JX, Liu GX (2019) Novel sandwich-structured composite pellicle displays high and tuned electrically conductive anisotropy, magnetism and photoluminescence. Chem Eng J 361:713–724

    Article  CAS  Google Scholar 

  26. Zhou XJ, Ma QL, Yu WS, Wang TT, Dong XT, Wang JX, Liu GX (2015) Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible janus nanofiber via electrospinning. J Mater Sci 50:7884–7895

    Article  CAS  Google Scholar 

  27. Yan X, Cayla A, Devaux E, Otazaghine B, Salaun F (2021) Simultaneous surface modification and mechanical enhancement of micro/nanofiber fabrics achieved by Janus particles. Express Polym Lett 15:626–640

    Article  CAS  Google Scholar 

  28. Wang QT, Geng YT, Li JH, Yin MZ, Hu YS, Liu YX, Pan K (2018) Novel magnetic-fluorescent bifunctional Janus nanofiber membrane. Nanotechnology 29:135702

    Article  PubMed  Google Scholar 

  29. Assaifan AK, Aijaz MO, Luqman M, Drmosh QA, Karim MR, Alharbi HF (2021) Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polym Bull 79:2831–2850

    Article  Google Scholar 

  30. Qanati MV, Rasooli A, Rezvani M (2022) Main structural and mechanical properties of electrospun PAN-based carbon nanofibers as a function of carbonization maximum temperature. Polym Bull 79:331–355

    Article  CAS  Google Scholar 

  31. Geng YT, Zhang P, Wang QT, Liu YX, Pan K (2017) Novel PAN/PVP Janus ultrafine fiber membrane and its application for biphasic drug release. J Mater Chem B 5:5390–5396

    Article  CAS  PubMed  Google Scholar 

  32. Qi HN, Ma QL, Xie YR, Song Y, Tian J, Dong XT, Li D, Liu GX, Yu H (2020) Electrospun polyfunctional conductive anisotropic Janus-shaped film, derivative 3D Janus tube and 3D plus 2D complete flag-shaped structures. J Mater Chem C 8:6565–6576

    Article  CAS  Google Scholar 

  33. Chou YC, Shao CL, Li XH, Su CY, Xu HC, Zhang MY, Zhang P, Zhang X, Liu YC (2013) BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. Appl Surf Sci 285:509–516

    Article  CAS  Google Scholar 

  34. Wang ML, Li D, Li J, Li SY, Chen Z, Yu DG, Liu ZP, Guo JZH (2020) Electrospun Janus Zein-PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater Des 196:109075

    Article  CAS  Google Scholar 

  35. Ismar E, Sarac AS (2018) Oxidation of polyacrylonitrile nanofiber webs as a precursor for carbon nanofiber: aligned and non-aligned nanofibers. Polym Bull 75:485–499

    Article  CAS  Google Scholar 

  36. Chi MQ, Chen SH, Zhong MX, Wang C, Lu XF (2018) Self-templated fabrication of FeMnO3 nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione. Chem Commun 54:5827–5830

    Article  CAS  Google Scholar 

  37. Sheng YQ, Tian J, Xie YR, Yang XL, Qi HN, Ma QL, Yu WS, Dong XT, Yu H, Liu GX (2020) Neoteric conjugative electrospinning towards alloplastic nanofiber yarns affording enhanced upconversion luminescence and tailored magnetism. ChemNanoMat 6:201900621

    Article  Google Scholar 

  38. Upadhyay A, Karpagam S (2016) Synthesis, photophysical and electrochemical properties of carbazole-containing 2,6-quinoline-based conjugated polymer. Polym Bull 73:2741–2760

    Article  CAS  Google Scholar 

  39. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX (2014) Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers. J Nanopart Res 16:2239

    Article  Google Scholar 

  40. Bagherzadeh M, Mousavi O, Ghahfarokhi ZS (2020) Fabrication and characterization of Fe3O4/polyvinylpyrrolidone (Fe3O4/PVP) nanocomposite as a coating for carbon steel in saline media. New J Chem 44:15148–15156

    Article  Google Scholar 

  41. Raghu AV, Jeong HM, Kim JH, Lee YR, Cho YB (2008) Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl)iminomethyl} phenol. Macromol Res 16:194–199

    Article  CAS  Google Scholar 

  42. Lv M, Ma QL, Dong XT, Wang JX, Yu WS, Liu GX (2014) Parallel spinnerets electrospinning fabrication of novel flexible luminescent-electrical-magnetic trifunctional bistrand-aligned nanobundles. Chem Eng J 243:500–508

    Article  CAS  Google Scholar 

  43. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4’-{1,4-phenylenebis[methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by Natural Science Foundation of Jilin Province of China (YDZJ202201ZYTS388, YDZJ202101ZYTS130, YDZJ202101ZYTS059), Science and Technology Research Project of the Education Department of Jilin Province (JJKH20230327KJ), National Natural Science Foundation of China (52173155), Natural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX1076, cstc2021jcyj-msxmX0798) and the Open Project Program of Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, China (No. 2019015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejian Zhang or Xiangting Dong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Wang, G., Hu, Y. et al. Conjugate electrospun photochromic adjustable magnetic bifunctional Janus-structure nanofibers array. Polym. Bull. 81, 2685–2700 (2024). https://doi.org/10.1007/s00289-023-04854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04854-x

Keywords

Navigation