Skip to main content
Log in

Microwave-assisted grafting of acrylamide on a natural xylan gum for controlled drug delivery

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Natural polymers offer significant advantages (biocompatibility, biodegradability, and non-toxicity) over synthetic polymers besides some reported disadvantages. However, natural polymeric structures can be modified by the grafting process for desired physicochemical properties. The purpose of the present research was to develop polyacrylamide-grafted xylan gum (XG) via green synthesis using microwave-assisted free radical polymerization with the use of ceric ammonium nitrate (initiator). Several batches of the grafted XG were prepared by varying three independent process variables (amount of acrylamide, ceric ammonium nitrate, and microwave irradiation time) and subsequently characterized for surface, physicochemical, and biodegradation properties. The grafted XG from the optimized batch was further used in the preparation of metoprolol succinate tablets, which showed desired properties including in vitro controlled release of highly water-soluble drug for more than 8 h following zero-order kinetics as the best-fit model. Therefore, the grafted XG, prepared using the microwave-assisted graft copolymerization method, proved its efficiency as an excellent pharmaceutical excipient for its use in controlled release systems for drugs with high aqueous solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Beneke C, Viljoen A, Hamman J (2009) Polymeric plant-derived excipients in drug delivery. Molecules 14:2602–2620. https://doi.org/10.3390/molecules14072602

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gaikwad VL, Bhatia NM, Singhvi I et al (2017) Computational modeling of polymeric physicochemical properties for formulation development of a drug containing basic functionality. J Pharm Sci 106:3337–3345. https://doi.org/10.1016/j.xphs.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  3. Sah SK, Tiwari AK, Shrivastava B et al (2016) Natural gums emphasized grafting technique: applications and perspectives in floating drug delivery system. Asian J Pharm 10:83. https://doi.org/10.22377/AJP.V10I2.604

    Article  Google Scholar 

  4. Gaikwad VL, Bhatia MS (2013) Polymers influencing transportability profile of drug. Saudi Pharm J 21:327–335. https://doi.org/10.1016/j.jsps.2012.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benabid FZ, Zouai F (2016) Natural polymers: cellulose, chitin, chitosan, gelatin, starch, carrageenan, xylan and dextran. Alger J Nat Prod 4:348–357. https://doi.org/10.5281/ZENODO.199036

    Article  Google Scholar 

  6. Alam MT, Parvez N, Sharma PK (2014) FDA-approved natural polymers for fast dissolving tablets. J Pharm 2014:1–6. https://doi.org/10.1155/2014/952970

    Article  Google Scholar 

  7. Gaikwad VL, Bhatia MS, Singhvi I (2013) Effect of polymeric properties on physical characteristics of fast disintegrating ibuprofen tablets: a statistical approach. Der Pharm Lett 5:140–147

    CAS  Google Scholar 

  8. Xu J, Krietemeyer EF, Finkenstadt VL et al (2016) Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties. Carbohydr Polym 140:233–237. https://doi.org/10.1016/j.carbpol.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  9. Fizir M, Dramou P, Zhang K et al (2017) Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci 505:476–488. https://doi.org/10.1016/j.jcis.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  10. Shi C, Sun Y, Wu H et al (2016) Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading. Int J Pharm 512:282–291. https://doi.org/10.1016/j.ijpharm.2016.08.054

    Article  CAS  PubMed  Google Scholar 

  11. Salimi K, Topuzogullari M, Dincer S et al (2016) Microwave-assisted green approach for graft copolymerization of l-lactic acid onto starch. J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.42937

    Article  CAS  Google Scholar 

  12. Rahul R, Jha U, Sen G, Mishra S (2014) A novel polymeric flocculant based on polyacrylamide grafted inulin: aqueous microwave assisted synthesis. Carbohydr Polym 99:11–21. https://doi.org/10.1016/j.carbpol.2013.07.082

    Article  CAS  PubMed  Google Scholar 

  13. Bhatia MS, Choudhari SP, Dhavale RP, Gaikwad VL (2021) Development of lipoprotein–drug conjugates for targeted drug delivery. J Biomol Struct Dyn 39:6955–6973. https://doi.org/10.1080/07391102.2020.1803964

    Article  CAS  PubMed  Google Scholar 

  14. Azmeera V, Tungala K, Adhikary P et al (2017) Solution and microwave assisted synthesis of β-cyclodextrin grafted polyacrylamide: water treatment and in-vitro drug release study. Int J Biol Macromol 104:1204–1211. https://doi.org/10.1016/j.ijbiomac.2017.06.111

    Article  CAS  PubMed  Google Scholar 

  15. Mittal H, Maity A, Sinha Ray S (2015) The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models. J Phys Chem A 119:2026–2039. https://doi.org/10.1021/jp5090857

    Article  CAS  Google Scholar 

  16. Mansour OY, Nagaty A (1985) Grafting of synthetic polymers to natural polymers by chemical processes. Prog Polym Sci 11:91–165. https://doi.org/10.1016/0079-6700(85)90009-7

    Article  CAS  Google Scholar 

  17. Karthika JS, Vishalakshi B (2014) Microwave-assisted synthesis and characterization of poly(itaconic acid) grafted gellan gum. Int J Polym Anal Charact 19:95–106. https://doi.org/10.1080/1023666X.2014.872815

    Article  CAS  Google Scholar 

  18. Grigoras M, Negru O-I (2012) Synthesis of star poly(N-vinylcarbazole) by microwave-assisted reversible addition-fragmentation chain transfer polymerization (RAFT). Polymers (Basel) 4:1183–1194. https://doi.org/10.3390/polym4021183

    Article  CAS  Google Scholar 

  19. Li J, Zhou P, Liu H et al (2014) Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase. Bioresour Technol 163:390–394. https://doi.org/10.1016/j.biortech.2014.04.106

    Article  CAS  PubMed  Google Scholar 

  20. de Carvalho DM (2015) Study on the structure and properties of xylan extracted from eucalyptus, sugarcane bagasse and sugarcane straw. http://kth.diva-portal.org/smash/get/diva2:862284/FULLTEXT01.pdf. Accessed 14 Apr 2021

  21. Jayapal N, Samanta AK, Kolte AP et al (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod 42:14–24. https://doi.org/10.1016/j.indcrop.2012.05.019

    Article  CAS  Google Scholar 

  22. FDA (2008) Metoprolol succinate extended-release tablets. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019962s036lbl.pdf. Accessed 2 Mar 2023

  23. Nandi G, Changder A, Ghosh LK (2019) Graft-copolymer of polyacrylamide-tamarind seed gum: synthesis, characterization and evaluation of flocculating potential in peroral paracetamol suspension. Carbohydr Polym 215:213–225. https://doi.org/10.1016/J.CARBPOL.2019.03.088

    Article  CAS  PubMed  Google Scholar 

  24. Metoprolol|C15H25NO3—PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Metoprolol#section=Melting-Point. Accessed 18 Sep 2021

  25. Metoprolol: Uses, Interactions, Mechanism of Action|DrugBank Online. https://go.drugbank.com/drugs/DB00264. Accessed 18 Sep 2021

  26. Sarath Chandiran I, Jayaveera KN, Saravanan G (2014) Formulation and evaluation of controlled release matrix transdermal patches of metoprolol succinate. Int J Res Pharm Sci 5:85–93

    Google Scholar 

  27. Song L, He S, Ping Q (2017) Development of a sustained-release microcapsule for delivery of metoprolol succinate. Exp Ther Med 13:2435–2441. https://doi.org/10.3892/ETM.2017.4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kundu D, Banerjee T (2019) Carboxymethyl cellulose-xylan hydrogel: synthesis, characterization, and in vitro release of vitamin B12. ACS Omega 4:4793–4803. https://doi.org/10.1021/acsomega.8b03671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun XF, Feng Y, Shi X, Wang Y (2016) Preparation and property of xylan/poly(methacrylic acid) semi-interpenetrating network hydrogel. Int J Polym Sci 2016:1–8. https://doi.org/10.1155/2016/8241078

    Article  CAS  Google Scholar 

  30. Marcelino H, da Silva A, Gomes M et al (2015) Leads from physical, chemical, and thermal characterization on cytotoxic effects of xylan-based microparticles. Polymers (Basel) 7:2304–2315. https://doi.org/10.3390/polym7111515

    Article  CAS  Google Scholar 

  31. Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45. https://doi.org/10.1016/j.carbpol.2010.04.018

    Article  CAS  Google Scholar 

  32. Gaikwad VL, Choudhari PB, Bhatia NM, Bhatia MS (2019) Chapter 2—Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. In: Grumezescu AM (ed) Nanomaterials for drug delivery and therapy. William Andrew Publishing, Amsterdam, pp 33–58

    Chapter  Google Scholar 

  33. Singh V, Tiwari A, Tripathi DN, Sanghi R (2004) Microwave assisted synthesis of Guar-g-polyacrylamide. Carbohydr Polym 58:1–6

    Article  CAS  Google Scholar 

  34. Patil T, Pawar A, Korake S et al (2022) Green synthesis of polyacrylamide grafted neem gum for gastro retentive floating drug delivery of ciprofloxacin hydrochloride: in vitro and in vivo evaluation. J Drug Deliv Sci Technol 72:103417. https://doi.org/10.1016/j.jddst.2022.103417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

There was no funding received from any agency to carry out the research work or for the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod L. Gaikwad.

Ethics declarations

Conflict of interest

All the authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phalle, S.P., Choudhari, P.B., Choudhari, S.P. et al. Microwave-assisted grafting of acrylamide on a natural xylan gum for controlled drug delivery. Polym. Bull. 81, 2583–2600 (2024). https://doi.org/10.1007/s00289-023-04853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04853-y

Keywords

Navigation