Skip to main content
Log in

Propyl modification of Moringa gum for drug delivery applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work represents the propyl modification and characterization of Moringa gum for sustained drug delivery applications. The propylation of Moringa gum was performed using n-propyl bromide by alkyl etherification process. The propylated Moringa gum was further evaluated as a diclofenac sodium-loaded matrix tablet and composite beads for sustained drug delivery. The modification of Moringa gum was confirmed by infrared spectroscopy. The degree of propyl substitution was determined to be 0.407. The characterization studies revealed the increase in the degree of crystallinity, thermal stability, surface roughness, and the decrease in viscosity on propyl modification. The native and modified gum had a molecular weight of 1.02 × 104 and 4.84 × 104 KDa, respectively. The diclofenac-loaded matrix tablets of Moringa gum disintegrated in simulated gastric fluid, while tablets of propyl Moringa gum provided sustained release of diclofenac by super case 2 transport following Higuchi release kinetics. The ionically gelled beads of propyl Moringa gum were able to control the burst release of diclofenac in simulated gastric fluid releasing 84% of the drug in 24 h following Higuchi kinetics. It can be concluded that the propyl-modified Moringa gum can be used as a pharmaceutical excipient for sustained drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumari L, Baghel M, Panda S, Sakure K, Giri TK, Badwaik H (2021) Chemistry, biological activities, and uses of Moringa gum. Gums, resins and latexes of plant origin. Springer International Publishing, Cham, pp 1–24

    Google Scholar 

  2. Badwaik HR, Al Hosque A, Kumari L, Sakure K, Baghel M, Giri TK (2020) Moringa gum and its modified form as a potential green polymer used in biomedical field. Carbohydr Polym 249:1–13

    Article  Google Scholar 

  3. Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21(1):17–25

    Article  CAS  PubMed  Google Scholar 

  4. Panda DS, Choudhury NSK, Yedukondalu M, Si S, Gupta R (2008) Evaluation of gum of Moringa oleifera as a binder and release retardant in tablet formulation. Indian J Pharm Sci 70(5):614–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abhishek, Rimpy, Ahuja M (2018) Moringa gum-g-poly(N-vinul-2-pyrrolidone)—a potential buccoadhesive polymer. Int J Biol Macromol 109:732–739

    Article  CAS  PubMed  Google Scholar 

  6. Rimpy, Abhishek, Ahuja M (2017) Evaluation of carboxymethyl moringa gum as a nanometric carrier. Carbohydr Polym 174:896–903

    Article  CAS  PubMed  Google Scholar 

  7. Grewal P, Mundlia J, Ahuja M (2019) Thiol modified moringa gum—a potential bioadhesive polymer. Carbohydr Polym 209:400–408

    Article  CAS  PubMed  Google Scholar 

  8. Ranote S, Ram B, Kumar D, Chauhan GS, Joshi V (2018) Functionalization of Moringa oleifera gum for use as Hg2+ ions adsorbent. J Environ Chem Eng 6(2):1805–1813

    Article  CAS  Google Scholar 

  9. Laha B, Das S, Maiti S, Sen KS (2019) Novel propyl karaya gum nanogels for bosentan: in vitro and in vivo drug delivery performance. Colloids Surf B Biointerfaces 180:263–272

    Article  CAS  PubMed  Google Scholar 

  10. Shibata M, Norawa R, Teramoto N, Yosomiya R (2010) Synthesis and properties of etherified pullulans. Eur Polym J 38(3):497–501

    Article  Google Scholar 

  11. Brune K, Patrignani P (2015) New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 20(8):105, 1–9.

  12. Todd PA, Sorkin EM (1988) Diclofenac sodium. A reappraisal of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 35(3):244–285.

    Article  CAS  PubMed  Google Scholar 

  13. Chuasuwan B, Binjesoh V, Polli JE, Zhang H, Amidon GL, Junginger HE, Midha KK (2009) Biowaiver monographs for immediate release solid oral dosage forms: diclofenac sodium and diclofenac potassium. J Pharm Sci 98(4):1206–1219

    Article  CAS  PubMed  Google Scholar 

  14. Brundig P, Borner RH, Haerting R, Janitzky V, Schilchter A (1990) Glycose aminoglycane excretion and concentration in the urine of patients with frequently recurrent calcium-oxalate lithiasis prior to and following Diclofenac-Na therapy. Urol Res 18(1):21–24

    Article  CAS  PubMed  Google Scholar 

  15. Altman R, Bosch B, Brune K, Patrignani B, Young C (2015) Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs 75(8):859–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wells JI (1988) Pharmaceutical preformulation: the physicochemical properties of drug substances. E Horwood.

  17. Verma S, Ahuja M (2017) Carboxymethyl sesbania gum: synthesis, characterization and evaluation for drug delivery. Int J Biol Macromol 98:75–83

    Article  CAS  PubMed  Google Scholar 

  18. Bajpai SK, Kirar N (2016) Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Des Mono Polym 19:89–98

    Article  CAS  Google Scholar 

  19. James W (2006). Pharmaceutical preformulation: the physicochemical properties of drug substances: Aulton ME. Pharmaceutics the science of dosage form design. Churchill livingstone (pp.113–138).

  20. Ahmad S, Manzoor K, Purwar R, Ikram S (2020) Morphological and swelling potential evaluation of Moringa oleifera gum/poly (vinyl alcohol) hydrogels as a superabsorbent. ACS Omega 5(29):17955–17961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh B, Kumar A (2020) Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications. Carbohydr Res 489:1–9

    Article  Google Scholar 

  22. Panda DS, Ansari SA (2013) Preformulation study on the gum of Moringa oleifera. Malays J Pharm Sci 11:41–47

    Google Scholar 

  23. Timilsena YP, Adhikari R, Kasapis S, Adhikari B (2016) Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr Polym 136(20):128–136

    Article  CAS  PubMed  Google Scholar 

  24. Irfan M, Munir H, Ismail H (2021) Moringa oleifera gum-based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomater Res 25(17):1–8

    Google Scholar 

  25. Dobos AM, Anca F, Alexandra B, Zaltariov M-F (2020) New approaches for the development of cellulose acetate/tetraethyl orthosilicate composite membranes: rheological and microstructural analysis. J Mol Liq 309:1–8

    Article  Google Scholar 

  26. Qu R, Tang M, Wang Y, Li D, Wang L (2020) TEMPO-oxidized cellulose fibers from wheat straw: effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydr Polym 255:1–9

    Google Scholar 

  27. Phad AB, Mahale N, Chaudhari SR, Salunke KS (2014) Matrix tablet: as a sustained release drug delivery system. World J Pharm Res 3:1377–1390

    CAS  Google Scholar 

  28. Banker GS, Ander LR (1987) Tablets. In: Lachman L, Liberman HA, Kanig JL (eds) The theory and practice of industrial pharmacy. Varghese Publishing House, India, pp 293–345

    Google Scholar 

  29. Patel BV, Patel D (2011) Study of disintegrant property of Moringa oleifera gum and its comparison with other superdisintegrants. Int J ChemTech Res 3:1119–1124

    CAS  Google Scholar 

  30. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanism of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  31. Shen X, Yu D, Zhu L, Branford-White C, White K, Chattrton NP (2011) Electrospun diclofenac sodium loaded Eudragit® L 100–55 nanofibers for colon-targeted drug delivery. Int J Pharm 408(1–2):200–207

    Article  CAS  PubMed  Google Scholar 

  32. Saravanan M, Bhaskar K, Maharajan G, Pillai KS (2011) Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration. J Drug Target 19(2):96–103

    Article  CAS  PubMed  Google Scholar 

  33. Odeku OA, Okunlola A, Lamprecht A (2013) Microbead design for sustained drug release using four natural gums. Int J Biol Macromol 58:113–120

    Article  CAS  PubMed  Google Scholar 

  34. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

  35. Verma S, Rimpy, Ahuja M (2020) Carboxymethyl modification of Cassia obtusifolia galactomannan and its evaluation as sustained release carrier. Int J Biol Macromol 164:3823–3824

    Article  CAS  Google Scholar 

  36. Dagar V, Pahwa R, Ahuja M (2022) Preparation and characterization of calcium cross-linked carboxymethyl tamarind kernel polysaccharide as release retardant polymer in matrix. Biointerface Res Appl Chem 13:1–14

    Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Coordinator, DST-FIST, Department of Physics, GJUST, Hisar (SR/FST/PSI-089-2005), for providing us with the facilities for X-ray diffraction studies, and the Director, Dr APJ Abdul Kalam Central Instrumentation Laboratory, GJUST, Hisar, for FT-IR, SEM, and rheology analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Ahuja.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, A., Yadav, S., Mudgal, P. et al. Propyl modification of Moringa gum for drug delivery applications. Polym. Bull. 81, 2643–2670 (2024). https://doi.org/10.1007/s00289-023-04840-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04840-3

Keywords

Navigation