Skip to main content
Log in

Prospect of electroactive poly(2-aminobenzoic acid) and poly(2-aminobenzoic acid)-nanocomposite-Fe2O3 as antibacterial agents and antioxidants

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The extraordinary features of the substituted polyanilines such as the electrical conductivity, redox behaviour, good environmental stability and excellent biocompatibility make them suitable for incorporation into the living systems. The present work aims at synthesizing poly(2-aminobenzoic acid) (PABA) and poly(2-aminobenzoic acid)-nanocomposite-Fe2O3 (PABA/Fe2O3) by emulsion polymerization using ammonium persulphate (APS) as the oxidant, hydrochloric acid (HCl) as the dopant and camphor sulphonic acid (CSA) as the surfactant. The structural, thermal and morphological characteristics of PABA and PABA/Fe2O3 were ascertained from UV–Visible spectroscopy, FT-IR spectroscopy, TGA/DTA and SEM–EDX. The materials were found to be semi-conducting with a conductivity of 1.5 × 10–3 S cm−1 for PABA and 1.4 × 10–3 S cm−1 for PABA/Fe2O3. The oxidation peak potentials were observed at 0.28 V and 0.5 V for PABA and at 0.27 V and 0.46 V for PABA/Fe2O3 corresponding to the change of emeraldine base to emeraldine salt to fully oxidized pernigraniline form. The reduction peaks were displayed at 0.4 V and 0.14 V for PABA and at 0.39 V and 0.12 V for PABA/Fe2O3 corresponding to the transition of fully oxidized pernigraniline to emeraldine salt to emeraldine base. The electrostatic binding between the positively charged –NH groups of PABA and the negatively charged bacterial cell wall of Enterococcus faecalis and Escherichia coli and the continuous release of Fe3+ ions of PABA/Fe2O3 enhanced the antibacterial activity. 50 µg/ml of PABA and PABA/Fe2O3 was the minimum inhibitory and minimum bactericidal concentration required to inhibit the growth of Enterococcus faecalis. 20 µL concentration of PABA/Fe2O3 was capable of inhibiting 89.85% DPPH free radicals owing to the synergic interaction of PABA and nano Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stanic V, Tanaskovic SB (2020) Nanotoxicity: prevention and antibacterial applications of nanomaterials, Micro and Nano technologies series. Elsevier publications, Amsterdam, p 241

    Book  Google Scholar 

  2. Hasantabar V, Lakouraj MM, Zare EN, Mohseni M (2017) Synthesis, characterization, and biological properties of novel bioactive poly(xanthoneamide-triazole-ethersulfone) and its multifunctional nanocomposite with polyaniline. Adv Polym Technol 36:309–319

    Article  CAS  Google Scholar 

  3. Nikolaidis MG, Sejdic JT, Bowmaker GA, Cooney RP, Thompson C, Kilmartin PA (2004) The antioxidant activity of conducting polymers in biomedical applications. Curr Appl Phys 4:347–350

    Article  Google Scholar 

  4. Lashkenari MS, Eisazadeh H (2014) Chemical Copolymerization and Characterization of Colloidal Poly(aniline-co-3-aminobenzoic acid) as a High-Performance Antibacterial Polymer. Adv Polym Technol 33:1

    Article  Google Scholar 

  5. Ahmad MN, Anjum MN, Nawaz F, Iqbal S, Saif MJ, Hussain T, Mujahid A, Farooq MU, Nadeem M, Rahman A, Raza A, Shehzad K (2018) Synthesis and antibacterial potential of hybrid nanocomposites based on polyorthochloroaniline/copper nanofiller. Polym Compos 39:4524

    Article  Google Scholar 

  6. Ahmad MN, Rafique F, Nawaz F, Farooq T, Anjum MN, Hussain T, Hassan S, Batool M, Khalid H, Shehzad K (2018) Synthesis of antibacterial poly(o-chloroaniline)/chromium hybrid composites with enhanced electrical conductivity. Chem Cent J 12:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai W, Wang J, Quan X, Wang Z (2018) Preparation of bromo-substituted polyaniline with excellent antibacterial activity. J Appl Polym Sci 135:45657

    Article  Google Scholar 

  8. Abd El- Salam HM, Azzam EMS, Aboad RS (2017) Synthesis and characterization of poly(2-aminothiophenol-co-2-methylaniline)/silver nanoparticles as antisulfate-reducing bacteria. Int J Polym Mat 67:501

    Article  Google Scholar 

  9. Al-Hussaini AS, Eldars W (2014) Non-conventional synthesis and antibacterial activity of poly(aniline-co-o-phenylenediamine)/bentonite nanocomposites. Des Monomers Polym 17:458

    Article  CAS  Google Scholar 

  10. Lakouraj MM, Zare EN, Moghadam PN (2014) Synthesis of novel conductive poly(p-phenylenediamine)/Fe3O4 nanocomposite via emulsion polymerization and investigation of antioxidant activity. Adv Polym Technol 33:21385

    Article  Google Scholar 

  11. Rouhi M, Lakouraj MM, Baghayeri M (2019) Low band gap conductive copolymer of thiophene with p-phenylenediamine and its magnetic nanocomposite: synthesis, characterization and biosensing activity. Polym Compos 40:1034

    Article  CAS  Google Scholar 

  12. Rivaz BL, Sanchez CO (2003) Poly(2-) and (3-aminobenzoic acids) and their copolymers with aniline: synthesis, characterization, and properties. J Appl Polym Sci 89:2641

    Article  Google Scholar 

  13. Phetsang S, Jakmunee J, Mungkornasawakul P, Laocharoensuk R, Ounnunkad K (2019) Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 127:125

    Article  CAS  PubMed  Google Scholar 

  14. Salahuddin NA, Ali M, Al-Lohedan HA, Issa ZA, Barakat A, Ayad MM (2021) Aniline-co-o-anthranilic acid copolymer-chitosan/Ag@AgCl nanohybrid as a carrier for (E)-N′-(Pyridin-2-ylmethylene) hydrazinecarbothiohydrazide release and antimicrobial activity. ACS Omega 6:21939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bilal S, Gul S, Holze R, Ali Shah AH (2015) An impressive emulsion polymerization route for the synthesis of highly soluble and conducting polyaniline salts. Synth Met 206:131

    Article  CAS  Google Scholar 

  16. Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag–Pt nanocomposite for improved antibacterial activity. Colloids Surf B Biointerfaces 103:9

    Article  CAS  PubMed  Google Scholar 

  17. Blois M (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199

    Article  CAS  Google Scholar 

  18. Tang J, Jing X, Wang B, Wang F (1988) Infra-red spectra of soluble polyaniline. Synth Met 24:231

    Article  CAS  Google Scholar 

  19. Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28:165

    Article  Google Scholar 

  20. Gruger A, Novak A, Regis A, Colomban P (1994) Infrared and Raman study of polyaniline Part II: Influence of ortho substituents on hydrogen bonding and UV/Vis—near-IR electron charge transfer. J Mol Struct 328:153

    Article  CAS  Google Scholar 

  21. Linganathan P, Sundararajan J, Samuel JM (2014) Synthesis, characterization, and photoconductivity studies on poly(2-chloroaniline) and poly(2-chloroaniline)/CuO nanocomposites. J Compos 2014:1–9

    Article  Google Scholar 

  22. Padmaja S, Samuel JM (2021) Chemically copolymerized poly(2-chloroaniline-co-2-ethylaniline)-composite-Zn as an anodic material in Li-ion batteries. Polym Bull 78:5119

    Article  CAS  Google Scholar 

  23. Suganthi R, Samuel JM (2019) Thermal and electrical transport properties of o-substituted polyanilines encapsulated with CuO nanoparticles. Asian J Chem 31:2261–2268

    Article  CAS  Google Scholar 

  24. Song H, Ni Y, Kokot S (2013) A glassy carbon electrode modified with poly(anthranilic acid), poly(diphenylamine sulfonate) and CuO nano-particles for the sensitive determination of hydrogen peroxide. Microchim Acta 180:1263

    Article  CAS  Google Scholar 

  25. Chauhan NPS, Ameta R, Ameta R, Ameta S (2010) Biological activity of emeraldine bases of polyaniline. J Ind Council Chem 27:128

    CAS  Google Scholar 

  26. Bogdanovic U, Vodnik V, Mitric M, Dimitrijevic S, Skapin SD, Zunic V, Budimir M, Stoilikovic M (2015) Nanomaterial with high antimicrobial efficacy-copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7:1955–1966

    Article  CAS  PubMed  Google Scholar 

  27. Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf B 86:146–153

    Article  CAS  Google Scholar 

  28. Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F (2012) Preparation and antibacterial activities of polyaniline/Cu0.05 Zn0.95 O nanocomposites. Dalton Trans 41:2804

    Article  CAS  PubMed  Google Scholar 

  29. Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B 92:35–41

    Article  CAS  Google Scholar 

  30. Zheng H, Zhang R, Dong F, Zheng Y, Shen J (1997) Electron transfer between two stable radicals. Macromol Rapid Commun 18:379

    Article  CAS  Google Scholar 

  31. Bharathi D, Ranjithkumar R, Vasantharaj S, Chandarshekar B, Bhuvaneshwari V (2019) Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. Int J Biol Macromol 132:880

    Article  CAS  PubMed  Google Scholar 

  32. Kumar H, Bhardwaj K, Nepovimova E, Kuca K, Dhanjal DS, Bhardwaj S, Bhatia SK, Verma R, Kumar D (2020) Antioxidant functionalized nanoparticles: a combat against oxidative stress. Nanomaterials 10:1

    Article  Google Scholar 

  33. Saikia JP, Banerjee S, Konwar BK, Kumar A (2010) Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf B Biointerfaces 81:158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhancy Mary Samuel.

Ethics declarations

Conflict of interest

The author(s) declare that there is no conflict of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, J., Samuel, J.M. Prospect of electroactive poly(2-aminobenzoic acid) and poly(2-aminobenzoic acid)-nanocomposite-Fe2O3 as antibacterial agents and antioxidants. Polym. Bull. 81, 2565–2581 (2024). https://doi.org/10.1007/s00289-023-04836-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04836-z

Keywords

Navigation