Skip to main content

Advertisement

Log in

Photoinitiated polymerization of a dental formulation, part 2: kinetic studies

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work examines the classic dental formulation of dimethacrylate resins Bis-GMA and TEGDMA with camphorquinone (CQ)/N,N-dimethylaminoethyl methacrylate, which is recognized as the most efficient photoinitiator system for this type of formulation. The kinetics of photoinitiated polymerization of this formulation was studied using isothermal photocalorimetry. Two kinetic models were applied. First, it is shown that an autocatalytic model can describe the reaction satisfactorily. As long as the reaction system has not reached its freezing point, the reaction follows the autocatalytic pattern perfectly. The analysis of the linear part of the curve then allows us to obtain the values of the coefficients m = 0.4 and n = 1.6. The reaction temperature does not influence the orders m and n of the reaction, but the phenomenological rate constant k varies with temperature according to the Arrhenius law up to 60 °C. In addition, the ratio of the rate constants kp and kt were calculated by means of a mechanistic model. Their evolution with conversion has been studied for different reaction temperatures, and the results effectively illustrate the importance of the reactive diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bayne SC (2013) Beginnings of the dental composite revolution. J Am Dental Assoc 144:42S-46S https://doi.org/10.14219/jada.archive.2013.0248

  2. Manouchehi F, Sadeghi B, Najafi F, Mosslemin MH, Niakan M (2019) Synthesis and characterization of novel polymerizable bis-quaternary ammonium dimethacrylate monomers with antibacterial activity as an efficient adhesive system for dental restoration. Polym Bull 76:1295–1315. https://doi.org/10.1007/s00289-018-2414-y

    Article  CAS  Google Scholar 

  3. Beun S, Glorieux T, Devaux J, Vreven J, Leloup G (2007) Characterization of nanofilled compared to universal and microfilled composites. Dent Mater 23:51–59

    Article  CAS  PubMed  Google Scholar 

  4. Schroeder WF, Cook WD, Vallo C (2008) Photopolymerization of N, N-dimethylaminobenzyl alcohol as amine co-initiator for light-cured dental resins. Dental Mater 24:686–693

    Article  CAS  Google Scholar 

  5. Gauthier MA, Zhang Z, Zhu XX (2009) New dental composites containing multimethacrylate derivatives of bile acide : Acomparative study with commercial monomers. Appl Mater Interfaces 1:824–832

    Article  CAS  Google Scholar 

  6. Atai M, Watts DC, Atai Z (2005) Shrinkage strain-rates of dental resin-monomer and composites systems. Biomaterials 26:5015–5020

    Article  CAS  PubMed  Google Scholar 

  7. Sarhaadei E, Najafi F, Akbari B (2022) Assessing two dominant methods of dental composites linear polymerization shrinkage management: macromonomers and prepolymerized fillers. Polym Bull 79:8193–8215. https://doi.org/10.1007/s00289-021-03893-6

    Article  CAS  Google Scholar 

  8. Park JH, Choi NS (2021) Polymerization shrinkage and stress analysis during dental restoration observed by digital image correlation method. J Mech Sci Technol 35:5435–5444. https://doi.org/10.1007/s12206-021-1114-y

    Article  Google Scholar 

  9. Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22(5):405–412

    Article  CAS  PubMed  Google Scholar 

  10. Lovell LG, Stansbury JW, Syrpes DC, Bowman CN (1999) Effects of composition and reactivity on the reaction kinetics of dimethacrylate/ dimethacrylate copolymerisation. Macromolecules 32:3913–3921

    Article  ADS  CAS  Google Scholar 

  11. Mendes LC, Tedesco AD, Miranda MS (2005) Determination of degree of conversion as function of depth of a photo-initiated dental restoration composite. Polym Testing 24:418–422

    Article  CAS  Google Scholar 

  12. Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829

    Article  CAS  PubMed  Google Scholar 

  13. Buchwald Z, Sandomierski M, Smulek W, Ratajczak M, Patalas A, Kaczorek E, Voelkel A (2022) Physical-chemical and biological properties of novel resin-based composites for dental applications. Polym Bull, pp 1–24. https://doi.org/10.1007/s00289-022-04606-3

  14. Atai M, Nekoomanesh M, Hashemi SA, Amani S (2004) Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mat 20:663–668

    Article  CAS  Google Scholar 

  15. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G (2006) Volume contraction in photocured dental resins: the shrinkage- conversion relationship revised. Dent Mat 22:359–365

    Article  CAS  Google Scholar 

  16. Lovell LG, Newman SM, Bowman CN (1999) The effects of light intensity, temperature and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 78:1469–1476

    Article  CAS  PubMed  Google Scholar 

  17. Dauvillers BS, Aarnst MP, Feilzer AJ (2003) Modelling of visco-elastic behavior of dental light-activated resin composites during curing. Dent Mat 19:277–285

    Article  Google Scholar 

  18. Goncalves F, Pfeifer CS, Ferracane JL, Braga RR (2008) Contraction stress determinants in dimethacrylate composites. J Dent Res 87:367–371

    Article  CAS  PubMed  Google Scholar 

  19. Carmem SP, Zachary RS, Roberto RB, Dario W, Jose CM, Jeffrey WS (2011) Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites. Eur Poly J 47:162–170

    Article  Google Scholar 

  20. Atai M, Watts DC (2006) A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resins. Dent Mat 22:785–791

    Article  CAS  Google Scholar 

  21. Achilias DS, Karabela MM, Sideridou ID (2008) Thermal degradation of light-cured dimethacrylate resins Part I. Isoconversional kinetic analysis. Thermochim Acta 472:74–83

    Article  CAS  Google Scholar 

  22. Bayou S, Mouzali M, Lecamp L, Lebaudy P (2013) Simulation of conversion profiles inside a thick dental material photopolymerized in the presence of nanofillers. Polym J 45:863–870

    Article  CAS  Google Scholar 

  23. Lecamp L, Youssef B, Bunel C, Lebaudy P (1999) Photoinitiated polymerization of a dimethacrylate oligomer: 2. Kinetic stud Polym 40:1403–1409

    CAS  Google Scholar 

  24. Bayou S, Mouzali M, Abadie MJM (2005) Etude de la photoréticulation par DPC de deux Systèmes TEGDMA / photoamorceur et Bis-GAA / photoamorceur. C R Chimie 8:905–910

    Article  Google Scholar 

  25. Morancho JM, Cadenato A, Fernandez-Francos X, Salla JM, Ramis X (2008) Isothermal kinetics of photopolymerization and thermal polymerization of Bis-GMA/TEGDMA resins. J Therm Anal Cal 92:513–522

    Article  CAS  Google Scholar 

  26. Raskin A, Salomon JP, Sabbagh J (2005) Les résines composites : classification-évolution. Réal Clin 16:297–312

    Google Scholar 

  27. Bayou S, Mouzali M, Lecamp L, Lebaudy P (2017) Photoinitiated polymerization of a dental formulation: 1. Influence of photoinitiating system, temperature and luminous intensity. J Fundam Appl Sci 9(2):685–695

    Article  CAS  Google Scholar 

  28. Asmusen S, Arenas G, Cook WD, Vallo C (2009) Photobleaching of camphorquinone during polymerization of dimethacrylate-based resins. Dent Mater 25:1603–1611

    Article  CAS  PubMed  Google Scholar 

  29. Lecampa L, Youssef B, Bunel C, Lebaudyb P (1997) Photoinitiated polymerization of a dimethacrylate oligomer: 1 Influence of photoinitiator concentration, temperature and light intensity. Polymer 38:6089–6096

    Article  Google Scholar 

  30. Kamoun EA, Winkel A, Eisenburger M, Menzel H (2016) Carboxylated camphorquinone as visible-light photoinitiator for biomedical application: Synthesis, characterization, and application. Arab J Chem 9:745–754. https://doi.org/10.1016/j.arabjc.2014.03.008

    Article  CAS  Google Scholar 

  31. Brandt WC, Schneider LFJ, Frollini E, Correr-Sobrinho L, Sinhoreti MAC (2010) Effect of different photo-initiators and light curing units on degree of conversion of composites. Braz Oral Res Jul-Sep 24(3):263–270. https://doi.org/10.1590/S1806-83242010000300002

    Article  Google Scholar 

  32. Amorin BC, Vicentin BLS, Di Mauro E (2020) Post-polymerization reactivity of free radicals trapped in resin-based dental restorative materials by ESR spectroscopy. Polym Bull 77:3249–3262. https://doi.org/10.1007/s00289-019-02914-9

    Article  CAS  Google Scholar 

  33. Kamal MR, Sourour S (1973) kinetic and thermal characterization of thermoset cure. Polym Eng Sci 13:59–64

    Article  CAS  Google Scholar 

  34. Abadie MJM, Rouby M (1996) II-Description d’un protocole d’étude pour résines photopolymérisables. J Biomatériaux Dentaires 11:141–148

    Google Scholar 

  35. Tryson GR, Shultz AR (1979) A calorimetric study of acrylate photopolymerization. J Polym Sci Polym Phys Ed 17:2059–2075

    Article  CAS  Google Scholar 

  36. Decker C, Elzaouk K, Decker D (1996) Kinetic study of ultrafast photo-polymerization reactions. J M S Pure Appl Chem A33(2):173–190

    CAS  Google Scholar 

  37. Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26:605–665

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Bayou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzidi, A., Bayou, S., Khier, N. et al. Photoinitiated polymerization of a dental formulation, part 2: kinetic studies. Polym. Bull. 81, 4221–4235 (2024). https://doi.org/10.1007/s00289-023-04832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04832-3

Keywords

Navigation