Skip to main content

Advertisement

Log in

Synthesis and physicochemical study of bisphenol-C epoxy cinnamate resin and its glass/jute and jute-natural fiber-reinforced composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bisphenol-C epoxy cinnamate (ECC) resin was synthesized by reacting 8.09 g epoxy resin of bisphenol-C, and 3.70 g cinnamic acid using 25 ml 1,4-dioxane as a solvent, and 1 ml triethylamine as a catalyst at reflux temperature for 1–6 h. Solid epoxy cinnamate is found to have excellent solubility in common organic solvents, 10.4–4.1 mg KOHg−1 acid values, and 303.0–426.0 mg KOH g−1 hydroxyl values. FTIR and 1HNMR spectral data supported the structure of ECC. Thermal polymerization of ECC followed by decomposition is supported by DSC exothermic (142.9°°C) and broad endothermic (300°°C) transitions. ECC followed three steps of degradation kinetics. The first step followed first-order (1.13) degradation kinetics, while the second (2.40) and the third (0.58) steps followed fractional-order degradation kinetics. The energy of activation for the second and third steps is more than 3 times that of the first step. The entropy change (ΔS*) for the first (− 176.3JK−1 mol−1) and third (− 84 JK−1 mol−1) steps are found large and negative, while it is positive for the second step (9.4 JK−1 mol−1). Jute-, Glass- and Jute-biomass-ECCS composites showed moderate to fairly good tensile strength, flexural strength, electric strength, and fairly good volume resistivity. J-ECCS and G-ECCS composites showed high water absorption tendency and excellent hydrolytic stability against water, 10% aq. HCl and 10% aq. NaCl and even in boiling water. The composites may be useful during natural calamities and under diverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM J Miner Met Mater Soc 58:80–86

    Article  CAS  Google Scholar 

  2. Ku H, Chan WL, Trada M, Baddeley D (2007) An evaluation of fracture toughness of vinyl ester composites cured under microwave conditions. J Mater Eng Perform 16:741–745

    Article  CAS  Google Scholar 

  3. Guo Z, Liang X, Pereira T, Scaffaro R, Thomas Hahn H (2007) CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos Sci Technol 67:2036–2044

    Article  CAS  Google Scholar 

  4. Marais S, Metayer M, Nguyen TQ, Labbe M, Saiter JM (2000) Diffusion and permeation of water through unsaturated polyester resins-influence of resin curing. Eur Polym J 36:453–462

    Article  CAS  Google Scholar 

  5. Visco AM, Campo N, Cianciafara P (2011) Comparison of seawater absorption properties of thermoset resins based composites. Composites Part A: Appl Sci Manuf 42:123–130

    Article  Google Scholar 

  6. Ramirez FA, Carlsson LA, Acha BA (2008) Evaluation of water degradation of vinyl ester and epoxy matrix composites by single fiber and composite tests. J Mater Sci 43:5230–5242

    Article  CAS  Google Scholar 

  7. Kootsookos A, Moritz A (2004) Seawater durability of glass-and carbon-polymer composites. Compos Sci Technol 64:1503–1511

    Article  CAS  Google Scholar 

  8. Karbhari VM, Zhang S (2003) E-glass/vinyl ester composites in aqueous environments–I: experimental results. Appl Compos Mater 10:19–48

    Article  CAS  Google Scholar 

  9. Manson J-AE, Wakeman MD, Bernet N (2000) Composite processing and manufacturing: an overview. In: Talreja R, Manson J-AE (Eds.) Volume 2 Polymer matrix composites (Comprehensive Composite Material). Elsevier Science, pp 577–607

  10. Chattopadhyay DK, Panda SS, Raju KSVN (2005) Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog in Org Coat 54:10–19

    Article  CAS  Google Scholar 

  11. Bajpai M, Shukla V, Kumar A (2002) Film performance and UV curing of epoxy acrylate resins. Prog in Org Coat 44:271–278

    Article  CAS  Google Scholar 

  12. Oprea S, Vlad S, Stanciu A, Macoveanu M (2000) Epoxy urethane acrylate. Euro. Polym J 36:373–378

    CAS  Google Scholar 

  13. Salasinska K, Polka M, Gloc M, Ryszkowska J (2016) Composites with pistachio shell and sunflower husk: the effect of filler content and chemical constitution on the dimensional and fire stability. Polimery-W 61:255–265

    Article  Google Scholar 

  14. Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber-reinforced plastics? Compos Sci Technol 53:1259–1264

    Article  Google Scholar 

  15. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  16. Nodehi M (2022) Epoxy, polyester, and vinyl ester based polymer concrete: a review. Innov Infrastr Solu 7(1):64. https://doi.org/10.1007/s41062-021-00661-3

    Article  Google Scholar 

  17. SevkanI VR, Patel RH, RH, (2022) Studies on phosphorous-based acrylate vinyl ester resin. Int J Polymer Anal Charact 27:530–541. https://doi.org/10.1080/1023666X.2022.2115216

    Article  CAS  Google Scholar 

  18. Pączkowski P, Puszka A, Gawdzik B (2022) Investigation of degradation of composites based on unsaturated polyester resin and vinyl ester resin. Materials 15:1286. https://doi.org/10.3390/ma15041286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khare JM, Dahiya S, Gangil B, Ranakoti L (2021) Comparative analysis of erosive wear behavior of epoxy, polyester and vinyl esters based thermosetting polymer composites for human prosthetic applications using Taguchi design. Polymers 13(20):3607. https://doi.org/10.3390/polym13203607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen Lu, Li Y, Zheng J, Mangeng L, Kun W (2015) Modified epoxy acrylate resin for photocurable temporary protective coatings. Prog Org Coat 89:17–25. https://doi.org/10.1016/j.porgcoat.2015.07.022

    Article  CAS  Google Scholar 

  21. Thanki JD, Parsania PH (2016) Synthesis and characterization of epoxy methacrylate of (E)-1, 3-bis(4-hydroxyphenyl) prop-2-en-1-one and its jute/glass composites. World Scientific News 42:182–196

    CAS  Google Scholar 

  22. Thanki JD, Parsania PH (2016) Synthesis and physicochemical study of epoxy methacrylate of 9,9’-bis(4-hydroxyphenyl)anthrone-10 and its jute and glass composites. J Polym Mater 33:305–317

    CAS  Google Scholar 

  23. Desai Prashil D, Jagtap Ramandand N (2022) Synthesis of ultraviolet curable bisphenol-based epoxy acrylates and comparative study on its physicochemical properties. J Appl Polym Sci 139:52022. https://doi.org/10.1002/app.52022

    Article  CAS  Google Scholar 

  24. Wang Yi, Vhen Z, Fei Y (2018) Preparation of epoxy-acrylic latex based on bisphenol F epoxy resin. J Macromol Sci Part A: Pure and Appl Chem 55:205–212. https://doi.org/10.1080/10601325.2017.1410065

    Article  CAS  Google Scholar 

  25. Adroja Pooja P, Koradiya SB, Parsania PH (2011) Synthesis, curing behavior and characterization of epoxy acrylate and triethylamine cured epoxy resin of 1,1’-bis(3-methyl-4-hydroxyphenyl)cyclohexane. Polym Plast Technol, and Eng 50:52–58

    Article  Google Scholar 

  26. Patel Jignesh V, Bhatt Ritesh D, Parsania Parsotam H (2014) Synthesis and characterization of methacrylate epoxy resin of 1,1’-bis(4-hydroxyphenyl)cyclohexane and its composites. J Polym Mater 31:409–420

    Google Scholar 

  27. Patel JV, Patel JP, Bhatt RD, Parsania PH (2015) Mechanical and electrical properties of jute-biomass-styrene methacrylate epoxy resin sandwich composites. J Sci Indus Res 74:577–581

    CAS  Google Scholar 

  28. Patel JV, Patel JP, Bhatt RD, Parsania PH (2016) Filled and unfilled glass/jute-epoxy methacrylate of 1,1’-bis(4-hydroxyphenyl)cyclohexane composites: Mechanical and electrical properties. Indian J Chem Technol 23:153–157

    Google Scholar 

  29. Bhatt Ritesh D, Patel Jignesh P, Parsania Parsotam H (2021) Potential comparison of montmorillonite filled and unfilled epoxy methacrylate of bisphenol-C-glass/ jute/treated jute and hybrid composites. World Scientific News 158:227–246

    Google Scholar 

  30. Parsania PH, Bhatt Ritesh D, Patel Jignesh P (2021) Synthesis and evaluation of some physical properties of epoxy methacrylate of bisphenol-C: a comparative study with commercial resin Aeropol-7105. Polym Bul 78:7355–7367

    Article  CAS  Google Scholar 

  31. Bhatt Ritesh D, Patel Jignesh P, Parsania PH (2021) Glass/Biofibers/Epoxy methacrylate of bisphenol-C sandwich composites: Comparative mechanical and electrical properties and chemical resistance. J Polym Mater 38:71–87

    Article  Google Scholar 

  32. Bhatt Ritesh D, Patel Jignesh P, Parsania Parsotam H (2022) Fabrication and comparative properties of sustainable Epoxy methacrylate of bisphenol-C-Jute/Treated Jute-Natural fibers sandwich composites: Part-I. J Polym Mater 39:205–221

  33. Bhatt Ritesh D, Patel Jignesh P, Parsania Parsotam H (2022) Fabrication and comparative properties of sustainable epoxy methacrylate of bisphenol-C-Jute/Treated Jute-Natural fibers sandwich composites: Part-II. J Polym Mater 39:223–239

  34. Vogel AI, Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1998) Vogel’s Textbook of Practical Organic Chemistry, 5th Ed., Longman Scientific and Technical: New York, NY

  35. Sanariya MR, Godhani DR, Baluja S, Parsania PH (1998) Synthesis and characterization of epoxy resins based on 1,1’-bis(4-hydroxyphenyl)cyclohexane and 1,1’-bis(3-methyl-4-hydroxyphenyl)cyclohexane. J Polym Mate 15:45–49

    CAS  Google Scholar 

  36. IS 6746 (1994) Unsaturated polyester resin specification

  37. Anderson DA, Freeman ES (1964) The kinetics of the thermal degradation of polystyrene and polyethylene. Polym Sci 54:253–260

    Article  Google Scholar 

  38. Xu W, Pranovich A, Uppstu P, Wang X, Kronlund D, Hemming J, Öblom H, Moritz N, Preis M, Sandler N, Willför S (2018) Novel bio-renewable composite of wood polysaccharide and polylactic acid for three-dimensional printing. Carbohyd Polym 187:51–58

    Article  CAS  Google Scholar 

  39. Asha AB, Sharif A, Hoque ME (2017) Interface interaction of jute fiber reinforced PLA biocomposites for potential applications. Green Biocomposites. Springer, Cham, pp 285–307

    Chapter  Google Scholar 

  40. Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of the natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci and Technol 65:563–569

    Article  CAS  Google Scholar 

  41. Collings T (1994) Handbook of polymer fiber composites. UK, Longman Scientific and Technical, p 366

    Google Scholar 

  42. Tyberg CS, Bergeron KM, Sankarapandian M, Singh P, Loss AC, Dillard DA, McGrath JE, Riffle JS (2000) Structure-property relationships of void-free phenolic–epoxy matrix materials. Polymer 41:5053–5062

    Article  CAS  Google Scholar 

  43. Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube-reinforced vinyl-ester nanocomposites. J Mater Sci 48:4260–4273

    Article  CAS  Google Scholar 

  44. Fraga AN, Alvarez VA, Vazquez A, De La Osa O (2003) Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. J Compos Mater 37:1553–1574

    Article  CAS  Google Scholar 

  45. Bao L-R, Yee AF (2002) Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer 43:3987–3997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the director, ERDA Vadodara for the electrical testing.

Funding

This work was supported by the Council of Scientific and Industrial Research in terms of major research project funding (01(2440)/10/EMR-II, Dt. 28–12-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parsotam H. Parsania.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest in this work. This work is not submitted either fully or partly somewhere else.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsania, P.H., Patel, J.V. & Patel, J.P. Synthesis and physicochemical study of bisphenol-C epoxy cinnamate resin and its glass/jute and jute-natural fiber-reinforced composites. Polym. Bull. 81, 3191–3207 (2024). https://doi.org/10.1007/s00289-023-04831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04831-4

Keywords

Navigation