Skip to main content
Log in

Sustainable process based on reactive extrusion to modify cellulose from oat hull with sodium trimetaphosphate and tartaric acid

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The development of green technologies to produce new biobased materials can minimize the dependence on fossil-based resources. The current study aimed to modify cellulose extracted from oat hull by employing a simple and ecofriendly process based on reactive extrusion using sodium trimetaphosphate (STMP) and tartaric acid (TA) as esterifying and cross-linking agents. STMP and TA were used at different concentrations (0, 5, 12.5, and 20% for TA and 0.025, 0.05, 0.1% for STMP). Reactive extrusion with STMP and TA did not change the morphology and crystallinity pattern of cellulose. Crystallinity indices ranged from 33 to 37% in modified samples, which presented higher affinity by the nonpolar solvent in wettability test and higher oil absorption capacity (7.26–8.60 g/g) when compared to unmodified cellulose (1.78 g/g). Reactive extrusion can be an effective and scalable technology for the modification of cellulose, resulting in materials with new characteristics and some advantages, such as low cost, short reaction times, low effluent generation and the use of nontoxic materials in all processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv 22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902

    Article  Google Scholar 

  2. Ubando AT, Felix CB, Chen W (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  CAS  PubMed  Google Scholar 

  3. Zhu H, Han Z, Cheng ZH, Sun DW (2022) Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: dissolution, structure and surface chemistry analysis. Food Chem 374:131675. https://doi.org/10.1016/j.foodchem.2021.131675

    Article  CAS  PubMed  Google Scholar 

  4. Debiagi F, Faria-Tischer PCS, Mali S (2020) Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27:1975–1988. https://doi.org/10.1007/s10570-019-02893-0

    Article  CAS  Google Scholar 

  5. Gil-Giraldo GA, Mantovan J, Marim BM, Kishima JOF, Mali S (2021) Surface modification of cellulose from oat hull with citric acid using ultrasonication and reactive extrusion assisted processes. Polysaccharides 2:218–233. https://doi.org/10.3390/polysaccharides2020015

    Article  CAS  Google Scholar 

  6. Marim MB, Mantovan J, Gil-Giraldo GA, Mali S (2021) Environmentally friendly process based on a combination of ultrasound and peracetic acid treatment to obtain cellulose from orange bagasse. J Chem Technol Biotechnol 96:630–638. https://doi.org/10.1002/jctb.6576

    Article  CAS  Google Scholar 

  7. Cagnin C, Simões BM, Yamashita F, Andrello AC, Carvalho GM, Grossmann MVE (2021) Hydrogels of starch/carboxymethyl cellulose crosslinked with sodium trimetaphosphate via reactive extrusion. J Appl Polym Sci 138:e50194. https://doi.org/10.1002/app.50194

    Article  CAS  Google Scholar 

  8. Cagnin C, Simões BM, Yamashita F, Carvalho GM, Grossmann MVE (2021) pH sensitive phosphate crosslinked films of starch-carboxymethyl cellulose. Polym Eng Sci 61:388–396. https://doi.org/10.1002/pen.25582

    Article  CAS  Google Scholar 

  9. Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. BioResources 10:8657–8749. https://doi.org/10.15376/biores.10.4.8657-8749

    Article  CAS  Google Scholar 

  10. Ma JG, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745. https://doi.org/10.1039/C5RA08522E

    Article  CAS  Google Scholar 

  11. Maaloul N, Oulego P, Rendueles M, Ghorbal A, Diaz M (2021) Enhanced Cu(II) adsorption using sodium trimetaphosphate-modified cellulose beads: equilibrium, kinetics, adsorption mechanisms, and reusability. Environ Sci Pollut Res 34:446523–446539. https://doi.org/10.1007/s11356-020-10158-8

    Article  CAS  Google Scholar 

  12. Pang L, Gao Z, Feng H, Wang S, Wang Q (2019) Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. J Control Release 316:105–115. https://doi.org/10.1016/j.jconrel.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  13. Zainal SH, Mohd NH, Suhaili S, Anuar FH, Lazim LM, Othaman R (2021) Preparation of cellulose-based hydrogel: a review. J Mater Res Techno 10:935–952. https://doi.org/10.1016/j.jmrt.2020.12.012

    Article  CAS  Google Scholar 

  14. Ponnusamy PG, Sundaram J, Mani S (2022) Preparation and characterization of citric acid crosslinked chitosan-cellulose nanofibrils composite films for packaging applications. J Appl Polym Sci 139:e52017. https://doi.org/10.1002/app.52017

    Article  CAS  Google Scholar 

  15. Tan T, Zhou J, Gao X, Tang X, Zhang H (2021) Synthesis, characterization and water-absorption behavior of tartaric acid-modified cellulose gel fromcorn stalk pith. Ind Crop Prod 169:113641. https://doi.org/10.1016/j.indcrop.2021.113641

    Article  CAS  Google Scholar 

  16. Sechi NSM, Marques PT (2017) Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Mater Res 20:174–180. https://doi.org/10.1590/1980-5373-MR-2016-1008

    Article  Google Scholar 

  17. Seker M, Hanna MA (2006) Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates. Ind Crops Prod 23:249–255. https://doi.org/10.1016/j.indcrop.2005.08.002

    Article  CAS  Google Scholar 

  18. Kim CT, Do K, Shih FF, Champagne ET, Daigle K (1999) Effects of phosphorylating salts and temperature on the preparation of rice starch phosphates by extrusion. Starch/Stärke 51:208–286

    Article  Google Scholar 

  19. Li BZ, Wang LJ, Li D, Chiu YL, Zhang ZJ, Shi J, Mao ZH (2009) Physical properties and loading capacity of starch-based microparticles crosslinked with trisodium trimetaphosphate. J Food Eng 92:255–260. https://doi.org/10.1016/j.jfoodeng.2008.10.008

    Article  CAS  Google Scholar 

  20. Ma X, Liu C, Anderson DP, Chang PR (2016) Porous cellulose spheres: preparation, modification and adsorption properties. Chemosphere 165:399–408. https://doi.org/10.1016/j.chemosphere.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  21. Reshma G, Reshmini CR, Nair SV, Menon D (2020) Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohyd Polym 248:116763. https://doi.org/10.1016/j.carbpol.2020.116763

    Article  CAS  Google Scholar 

  22. Heebthong K, Ruttarattanamongkol K (2016) Physicochemical properties of cross-linked cassava starch prepared using a pilot-scale reactive twin-screw extrusion process (REX). Starch-Stärke 68:528–540. https://doi.org/10.1002/star.201500065

    Article  CAS  Google Scholar 

  23. Alimi BA, Workneh TS (2018) Structural and physicochemical properties of heat moisture treated and citric acid modified acha and iburu starches. Food Hydrocoll 81:449. https://doi.org/10.1016/j.foodhyd.2018.03.027

    Article  CAS  Google Scholar 

  24. Simões BM, Cagnin C, Yamashita F, Olivato JB, Garcia PS, Mali S, Grossmann MVE (2020) Citric acid as crosslinking agent in starch/xanthan gum hydrogels produced by extrusion and thermopressing. LWT 125:108950. https://doi.org/10.1016/j.lwt.2019.108950

    Article  CAS  Google Scholar 

  25. Sun S, Liu O, Ji N, Hou H, Dong H (2018) Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocoll 77:964–975. https://doi.org/10.1016/j.foodhyd.2017.11.046

    Article  CAS  Google Scholar 

  26. Pereira JF, Marim BM, Mali S (2022) Chemical modification of cellulose using a green route by reactive extrusion with citric and succinic acids. Polysaccharides 3:292–305. https://doi.org/10.3390/polysaccharides3010017

    Article  CAS  Google Scholar 

  27. Tao X, Nonaka H (2021) Wet extrusion molding of wood powder with hydroxypropylmethyl cellulose and with citric acid as a crosslinking agent. BioResources 16:2314–2325. https://doi.org/10.15376/biores

    Article  CAS  Google Scholar 

  28. Spiridon J, Teacǎ CA, Bodîrlǎu R, Bercea M (2013) Behavior of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environm 21:431–440. https://doi.org/10.1007/s10924-012-0498-2

    Article  CAS  Google Scholar 

  29. Formela K, Zedler L, Hejna A, Tercjak A (2018) Reactive extrusion of bio-based polymer blends and composites—current trends and future developments. Express Polym Lett 12:24–57. https://doi.org/10.3144/expresspolymlett.2018.4

    Article  Google Scholar 

  30. Moad G (2011) Chemical modification of starch by reactive extrusion. Prog Polym Sci 36:218–237. https://doi.org/10.1016/j.progpolymsci.2010.11.002

    Article  CAS  Google Scholar 

  31. Gaudino EC, Grillo G, Manzoli M, Tabasso S, Maccagnan S (2022) Mechanochemical applications of reactive extrusion from organic synthesis to catalytic and active materials. Molecules 27:449. https://doi.org/10.3390/molecules27020449

    Article  CAS  Google Scholar 

  32. Van Soest PJ (1965) Symposium on factors influencing the voluntary intake of herbage by ruminants: voluntary intake in relation to chemical composition and digestibility. J Anim Sci 24:834–843. https://doi.org/10.2527/jas1965.243834x

    Article  Google Scholar 

  33. TAPPI (1999) Test method T222 om-88, acid-insoluble lignin in wood and pulp, in Tappi test methods. Tappi Press, Atlanta

    Google Scholar 

  34. Volkert B, Lehmann A, Greco T, Nejad MH (2010) A comparison of different synthesis routes for starch acetates and the resulting mechanical properties. Carbohyd Polym 79:571–577. https://doi.org/10.1016/j.carbpol.2009.09.005

    Article  CAS  Google Scholar 

  35. MAPA (2014) Ministério da agricultura, pecuária e abastecimento. Determinação colorimétrica de fósforo total em produtos deorigem animal. Código, MET POA/SLAV/31/02/01

  36. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  37. Lu H, Gui X, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:121–128. https://doi.org/10.1016/j.foodres.2012.10.013

    Article  CAS  Google Scholar 

  38. Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carboh Polym 79:731–737. https://doi.org/10.1016/j.carbpol.2009.09.033

    Article  CAS  Google Scholar 

  39. Bizot H (1983) Using the gab model to construct sorption isotherms. In: Jowitt R, Escher F, Hallistrom B, Meffert HFT, Spiess WWL, Vos G (eds) Physical properties of foods. Applied Science Publishers, London, pp 43–54

    Google Scholar 

  40. Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J App Polym Sci 99:3251–3256. https://doi.org/10.1002/app.22794

    Article  CAS  Google Scholar 

  41. Oliveira JP, Bruni GP, Lima KO, El-Halal SLM, Rosa GS, Dias ARG, Zavareze ER (2017) Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem 221:153–160. https://doi.org/10.1016/j.foodchem.2016.10.048

    Article  CAS  PubMed  Google Scholar 

  42. Dong H, Vasanthan T (2020) Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocoll 101:105506. https://doi.org/10.1016/j.foodhyd.2019.105506

    Article  CAS  Google Scholar 

  43. Manoi K, Rizvi SSH (2010) Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydr Polym 81:687–694. https://doi.org/10.1016/j.carbpol.2010.03.042

    Article  CAS  Google Scholar 

  44. Mantovan J, Gil-Giraldo GA, Marim BM, Garcia PS, Baron AM, Mali S (2021) Cellulose-based materials from orange bagasse employing environmentally friendly approaches. Biomass Convers Biorefin 24:132–142. https://doi.org/10.1007/s13399-021-01279-2

    Article  CAS  Google Scholar 

  45. Duan L, Yu W, Li Z (2017) Analysis of structural changes in jute fibers after peracetic acid treatment. J Eng Fiber Fabr 12:33. https://doi.org/10.1177/155892501701200104

    Article  CAS  Google Scholar 

  46. Lee HR, Kazlauskas RJ, Park TH (2017) Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility. Biotechnol Bioprocess Eng 22:405–412. https://doi.org/10.1007/s12257-017-0139-7

    Article  CAS  Google Scholar 

  47. Ramírez JAA, Fortunati E, Kenny JM, Toree J, Foresti ML (2017) Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohyd Polym 157:1358–1364. https://doi.org/10.1016/j.carbpol.2016.11.008

    Article  CAS  Google Scholar 

  48. El-Halal SLM, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreño NLV, Dias ARG, Zavareze ER (2015) Films based on oxidized starch and cellulose from barley. Carbohyd Polym 133:644–653. https://doi.org/10.1016/j.carbpol.2015.07.024

    Article  CAS  Google Scholar 

  49. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  50. Hammouda S, Chen Z, An C, Lee K (2021) Recent advances in developing cellulosic sorbent materials for oil spill cleanup: a state-of-the-art review. J Clean Prod 311:127630. https://doi.org/10.1016/j.jclepro.2021.127630

    Article  CAS  Google Scholar 

  51. Miranda MIG, Bica CID, Nachtigall SMB, Rehman N, Rosa SML (2013) Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques. Thermochim Acta 565:65–71. https://doi.org/10.1016/j.tca.2013.04.012

    Article  CAS  Google Scholar 

  52. Alharbi K, Ghoneim A, Ebid A, El-Hamshary H, El-Newehy MH (2018) Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant. Int J Biol Macromol 116:224–231. https://doi.org/10.1016/j.ijbiomac.2018.04.182

    Article  CAS  PubMed  Google Scholar 

  53. Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose 21:2773–2787. https://doi.org/10.1007/s10570-014-0334-z

    Article  CAS  Google Scholar 

  54. Merci A, Urbano A, Grossmann MVE, Tischer CA, Mali S (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res Int 73:38–43. https://doi.org/10.1016/j.foodres.2015.03.020

    Article  CAS  Google Scholar 

  55. Vercelheze AES, Marim BM, Oliveira ALM, Mali S (2019) Development of biodegradable coatings for maize seeds and their application for Azospirillum brasilense immobilization. Appl Microbio Biotechnol 103:2193–2203. https://doi.org/10.1007/s00253-019-09646-w

    Article  CAS  Google Scholar 

  56. Salleh KM, Zakaria S, Sajab MS, Gan S, Kaco H (2019) Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. In J Biol Macromol 131:50–59. https://doi.org/10.1016/j.ijbiomac.2019.03.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Spectroscopy (ESPEC), Laboratory of Electronic Microscopy and Microanalysis (LMEM) and Laboratory of X-ray Analysis (LARX) of the State University of Londrina for the analyses. CAPES-Brazil for the doctorate grant of Gina Alejandra Gil Giraldo, Janaina Mantovan and Beatriz M. Marim (CAPES-DS) and CAPES (Cod. 001). FINEP (01.21.0126.00-REF. 0128/2021) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Mali.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marim, B.M., Mantovan, J., Pereira, J.F. et al. Sustainable process based on reactive extrusion to modify cellulose from oat hull with sodium trimetaphosphate and tartaric acid. Polym. Bull. 81, 2345–2364 (2024). https://doi.org/10.1007/s00289-023-04825-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04825-2

Keywords

Navigation