Skip to main content
Log in

Synthesis and physico-chemical properties of composites based on polyaniline and nanosized sulfur

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

One of the promising directions in the field of creating new composite materials is the development of composites based on conductive polyaniline. In this work, synthesis of polyaniline was carried out in the presence of nanosized sulfur particles. Sulfur particles were obtained both in situ in the reaction mixture and added during polymerization. The studies of the process of oxidative polymerization of aniline in the presence of insoluble components were carried out using the method of monitoring the open circuit potential (OCP), as well as by recording the particle size with a laser analyzer. All obtained samples were studied using optical spectroscopy methods (IR-, UV-spectroscopy), elemental and thermogravimetric analyzes, scanning electron microscopy, and the change in conductivity depending on the percentage of sulfur was assessed. It was found that the presence of sulfur particles led to a significant decrease in the rate of aniline polymerization, which was reflected in the OCP profiles in the form of an increase in the time to reach maxima. Samples obtained using metal polysulfides demonstrate better thermal stability and electrical conduction properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jadhav A, Qureshi SS, Jadhav H et al (2020) Conducting polymers and their composites. Contemp Nanomater Mater Eng Appl 147–178. https://doi.org/10.1007/978-3-030-62761-4

  2. Molapo KM, Ndangili PM, Ajayi RF et al (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    Article  CAS  Google Scholar 

  3. Jangid NK, Jadoun S, Kaur N (2020) A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur Polym J 125:109485. https://doi.org/10.1016/j.eurpolymj.2020.109485

    Article  CAS  Google Scholar 

  4. Sapurina I, Shishov M (2012) Oxidative polymerization of aniline: polyaniline molecular synthesis and the formation of supramolecular structures. In: Gomes AS (ed) New polymers for special applications. INTECH, pp 251−312. https://doi.org/10.5772/48758

  5. Li L, Ruan G, Peng Z et al (2014) Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes. ACS Appl Mater Interfaces 17:15033–15039. https://doi.org/10.1021/am5030116

    Article  CAS  Google Scholar 

  6. Zhao X, Kim JK, Ahn HJ et al (2013) A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries. Electrochim Acta 109:145–152. https://doi.org/10.1016/j.electacta.2013.07.067

    Article  CAS  Google Scholar 

  7. Biglova Y, Salikhov R, Abdrakhmanov I et al (2017) Preparation and investigation of soluble functionalized polyanilines. Phys Solid State 59:1253–1259. https://doi.org/10.1134/S106378341706004X

    Article  CAS  Google Scholar 

  8. Tamboli MS, Kulkarni MV, Patil RH et al (2012) Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B 92:35–41. https://doi.org/10.1016/j.colsurfb.2011.11.006

    Article  CAS  Google Scholar 

  9. Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26:605–613. https://doi.org/10.1016/S1005-0302(10)60093-X

    Article  CAS  Google Scholar 

  10. Liu P, Liu W, Xue Q (2004) In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Mater Chem Phys 87:109–113. https://doi.org/10.1016/j.matchemphys.2004.05.001

    Article  CAS  Google Scholar 

  11. He J, He Y, Fan Y et al (2017) Conjugated polymer-mediated synthesis of nitrogen-doped carbon nanoribbons for oxygen reduction reaction. Carbon 124:630–636. https://doi.org/10.1016/j.carbon.2017.08.081

    Article  CAS  Google Scholar 

  12. Chang CH, Huang TC, Peng CW et al (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50:5044–5051. https://doi.org/10.1016/j.carbon.2012.06.043

    Article  CAS  Google Scholar 

  13. Wei P, Fan M, Chen H et al (2015) High-capacity graphene/sulfur/polyaniline ternary composite cathodes with stable cycling performance. Electrochim Acta 174:963–969. https://doi.org/10.1016/j.electacta.2015.06.052

    Article  CAS  Google Scholar 

  14. Sapurina IY, Stejskal J, Trchová M et al (2006) Organic nanocolloidal polyaniline dispersions containing fullerene. Fuller Nanotub Carbon Nanostructures 14:447–455. https://doi.org/10.1080/15363830600666126

    Article  CAS  Google Scholar 

  15. Zhou W, Yu Y, Chen H et al (2013) Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc 135:16736–16743. https://doi.org/10.1021/ja409508q

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Zhang Q, Zheng G et al (2013) Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 13:5534–5540. https://doi.org/10.1021/nl403130h

    Article  CAS  PubMed  Google Scholar 

  17. Ghebache Z, Safidine Z, Hamidouche F et al (2021) Effect of hematite on the energy storage performance of polyaniline/zeolite HY/α-Fe2O3 nanocomposite supercapacitor electrode. J Inorg Organomet Polym Mater 31:1153–1162. https://doi.org/10.1007/s10904-020-01801-5

    Article  CAS  Google Scholar 

  18. Benzerafa A, Amokrane S, Boulaouche T et al (2021) Synthesis of novel conducting polyaniline composites based on seaweed Enteromorpha compressa macro-alga powder. Polym Bull 78:1909–1924. https://doi.org/10.1007/s00289-020-03191-7

    Article  CAS  Google Scholar 

  19. An Y, Wei P, Fan M et al (2016) Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium–sulfur batteries. Appl Surf Sci 375:215–222. https://doi.org/10.1016/j.apsusc.2016.03.070

    Article  CAS  Google Scholar 

  20. Qiu L, Zhang S, Zhang L et al (2010) Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochim Acta 55:4632–4636. https://doi.org/10.1016/j.electacta.2010.03.030

    Article  CAS  Google Scholar 

  21. Zhou W, Yu Y, Chen H et al (2013) Yolk−shell structure of polyaniline-coated sulfur for lithium−sulfur batteries. J Am Chem Soc 135:16736–16743. https://doi.org/10.1021/ja409508q

    Article  CAS  PubMed  Google Scholar 

  22. Mukhamedzyanova AA, Akhmetshin BS et al (2019) Obtaining sulfur nanoparticles by acid precipitation from an aqueous solution of calcium polysulfide. Reports of the Bashkir University 4:576–581. https://doi.org/10.33184/dokbsu-2019.6.1

  23. Latypova LR et al (2020) Synthesis and physicochemical properties of poly [2-(2-chloro-1-methylbut-2-en-1-yl) aniline] obtained with various dopants. Polym Int 69:804–812. https://doi.org/10.1002/pi.6016

    Article  CAS  Google Scholar 

  24. Mustafin AG, Sadykov TT et al (2020) A method for producing an electrically conductive composite based on polyaniline and nanoscale sulfur. RF patent application No. 2020143286, dated 25.12.2020. https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPATAP&DocNumber=2020143286

  25. Massalimov IA, Mustafin AG, Shangareeva AR et al (2012) Method for producing colloidal nanosized sulfur. RF patent No. 2456231 dated 20.07.12. https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2456231

  26. Andriianova AN, Biglova YN, Mustafin AG (2020) Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 10:7468–7491. https://doi.org/10.1039/C9RA08644G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andriianova AN, Abyalilova AR, Biglova YuN et al (2020) Effect of cobalt phthalocyanine on the chemical polymerization of aniline. ChemistrySelect 5:5621–5628. https://doi.org/10.1002/slct.202001086

    Article  CAS  Google Scholar 

  28. Ogurtsov NA, Mikhaylov SD, Coddeville P et al (2016) Influence of dispersed nanoparticles on the kinetics of formation and molecular mass of polyaniline. J Phys Chem B 120:10106–10113. https://doi.org/10.1021/acs.jpcb.6b05944

    Article  CAS  PubMed  Google Scholar 

  29. Ogurtsov NA, Noskov YV, Pud AA (2015) Effect of multiwalled carbon nanotubes on the kinetics of the aniline polymerization: the semi-quantitative OCP approach. J Phys Chem B 119:5055–5061. https://doi.org/10.1021/jp511665q

    Article  CAS  PubMed  Google Scholar 

  30. Voyutsky SS (1975) Course of Colloidal Chemistry, two ed., Chemistry, Moscow

  31. Baibarac M, Baltog I, Lefrant S et al (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156. https://doi.org/10.1021/cm021287x

    Article  CAS  Google Scholar 

  32. Stejskal J, Sapurina I, Trchova M et al (1998) Solid-state protonation and electrical conductivity of polyaniline. Macromolecules 31:2218–2222. https://doi.org/10.1021/ma970823h

    Article  CAS  Google Scholar 

  33. Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polymer 34:1833–1845. https://doi.org/10.1016/0032-3861(93)90424-9

    Article  CAS  Google Scholar 

  34. Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 82:2385–2400. https://doi.org/10.1039/F19868202385

    Article  CAS  Google Scholar 

  35. Masters JG, Sun Y, MacDiarmid AG et al (1991) Polyaniline: allowed oxidation states. Synth Met 41:715–718. https://doi.org/10.1016/0379-6779(91)91166-8

    Article  CAS  Google Scholar 

  36. Sindhimeshram DC, Gupta MC (1995) Transport properties of substituted derivatives of polyaniline. Indian J Chem 34A:260–277

    CAS  Google Scholar 

  37. Tran HD, D’Arcy JM, Wang Y et al (2011) The oxidation of aniline to produce «polyaniline»: a process yielding many different nanoscale structures. J Mater Chem 21:3534–3550. https://doi.org/10.1039/C0JM02699A

    Article  CAS  Google Scholar 

  38. Andriianova AN, Biglova YuN, Mustafin AG (2020) Metal phthalocyanines: effect on the synthesis and physicochemical properties of polyaniline. Mendeleev Commun 30:624–626. https://doi.org/10.1016/j.mencom.2020.09.024

    Article  CAS  Google Scholar 

  39. Li X, Rao M, Li W (2016) Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium–sulfur battery. J Solid State Electrochem 20:153–161. https://doi.org/10.1007/s10008-015-3013-6

    Article  CAS  Google Scholar 

  40. Wei Y, Focke WW, Wnek GE et al (1989) Synthesis and electrochemistry of alkyl ring-substituted polyanilines. J Phys Chem 93:495–499. https://doi.org/10.1021/j100338a095

    Article  CAS  Google Scholar 

  41. Geniès EM, Lapkowski M, Penneau JF (1988) Cyclic voltammetry of polyaniline: interpretation of the middle peak. J Electroanal Chem Interfacial Electrochem 249:97–107. https://doi.org/10.1016/0022-0728(88)80351-6

    Article  Google Scholar 

  42. Pruneanu S, Veress E, Marian I, Oniciu L (1999) Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. J Mater Sci 34:2733–2739. https://doi.org/10.1023/A:1004641908718

    Article  CAS  Google Scholar 

  43. Li GC, Li GR, Ye SH, Gao XP (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245. https://doi.org/10.1002/aenm.201200017

    Article  CAS  Google Scholar 

  44. Bhadra S, Khastgir D, Singha N, Lee J (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810. https://doi.org/10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out with the financial support of the Russian Foundation for Basic Research within the scientific project No. 20-33-90316\20. This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state task No. 1021062311390-1-1.4.1.

Author information

Authors and Affiliations

Authors

Contributions

Timur T. Sadykov: ideas, development or design of methodology, verification reproducibility of results, performing the experiments, writing—original draft preparation, preparation, creation of the published work; Ismail A. Massalimov: provision of study materials, reagents, materials, provision computing resources, or other analysis tools; Akhat G. Mustafin: ideas, provision of study materials, data curation, reagents, materials, supervision, project administration.

Corresponding author

Correspondence to Timur T. Sadykov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, T.T., Massalimov, I.A. & Mustafin, A.G. Synthesis and physico-chemical properties of composites based on polyaniline and nanosized sulfur. Polym. Bull. 81, 2757–2776 (2024). https://doi.org/10.1007/s00289-023-04823-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04823-4

Keywords

Navigation