Skip to main content
Log in

Effect of chain extenders on the thermal and thermodegradation behavior of carbonatodiol thermoplastic polyurethane

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we investigated the impact of chain extenders with varying numbers of carbon atoms (2–6) on the thermal degradation behavior of thermoplastic polyurethanes based on diol carbonate (TPU) in air and nitrogen atmospheres. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were utilized to evaluate phase separation and thermal degradation, respectively. The experimental data provided valuable insights into the thermal degradation of TPUs and the mechanisms involved in the process. In addition, the physical/chemical nature of the process was considered when explaining the degradation mechanisms. Our results showed that the 4-carbon chain extender exhibited a longer average degradation time than the other chain extenders due to the stabilization of the urethane bond, as confirmed by both ANSI/ASTM D-2307 and the artificial neural network (ANN). Using the isoconversional method and an ANN approach, we obtained reliable kinetic data that allowed us to predict the materials’ endurance time and thermal degradation behavior by constructing a dedicated network. This proposed methodology can be applied to other materials and characterization techniques, provided sufficient data is available. Overall, this study contributes to a better understanding of the thermal degradation behavior of TPUs and provides insights that can help develop more robust and durable materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data needed to reproduce these findings can be shared if the authors request.

References

  1. Oertel G, Abele L (1994) Polyurethane handbook: chemistry, raw materials, processing, application, properties.

  2. Ionescu M. Chemistry and technology of polyols for polyurethanes. iSmithers Rapra Publishing; 2005.

  3. Asensio M, Costa V, Nohales A, Bianchi O, Gómez CM (2019) Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers 11(12):1910. https://doi.org/10.3390/polym11121910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agnol LD, Gonzalez Dias FT, Nicoletti NF, Falavigna A, Bianchi O (2018) Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review. Regen Med 13(05):611–626. https://doi.org/10.2217/rme-2018-0003

    Article  CAS  PubMed  Google Scholar 

  5. Agnol LD, Dias FTG, Nicoletti NF, Marinowic D, Mourae Silva S, Marcos-Fernandez A et al (2019) Polyurethane tissue adhesives for annulus fibrosus repair: mechanical restoration and cytotoxicity. J Biomater Appl 34(5):673–686. https://doi.org/10.1177/0885328219864901

    Article  CAS  PubMed  Google Scholar 

  6. Favero D, Marcon V, Figueroa CA, Gómez CM, Cros A, Garro N et al (2021) Effect of chain extender on the morphology, thermal, viscoelastic, and dielectric behavior of soybean polyurethane. J Appl Polym Sci 138(27):50709. https://doi.org/10.1002/app.50709

    Article  CAS  Google Scholar 

  7. Ernzen JR, Romoaldo CH, Gommes C, Covas JA, Marcos-Fernández A, Fiorio R et al (2022) Tuning thermal, morphological, and physicochemical properties of thermoplastic polyurethanes (TPUs) by the 1,4-butanediol (BDO)/dipropylene glycol (DPG) ratio. Polymers 14(15):3164. https://doi.org/10.3390/polym14153164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pourmohammadi-Mahunaki M, Haddadi-Asl V, Roghani-Mamaqani H, Koosha M, Yazdi M (2022) Effect of chain extender length and molecular architecture on phase separation and rheological properties of ether-based polyurethanes. Polym Bull 79(10):8653–8668. https://doi.org/10.1007/s00289-021-03907-3

    Article  CAS  Google Scholar 

  9. Burelo M, Gaytán I, Loza-Tavera H, Cruz-Morales JA, Zárate-Saldaña D, Cruz-Gómez MJ et al (2022) Synthesis, characterization and biodegradation studies of polyurethanes: effect of unsaturation on biodegradability. Chemosphere. 307:136136. https://doi.org/10.1016/j.chemosphere.2022.136136

    Article  CAS  PubMed  Google Scholar 

  10. Burelo M, Gutiérrez S, Treviño-Quintanilla CD, Cruz-Morales JA, Martínez A, López-Morales S (2022) Synthesis of biobased hydroxyl-terminated oligomers by metathesis degradation of industrial rubbers sbs and pb: tailor-made unsaturated diols and polyols. Polymers 14(22):4973. https://doi.org/10.3390/polym14224973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oprea S (2010) The effect of chain extenders structure on properties of new polyurethane elastomers. Polym Bull 65(8):753–766. https://doi.org/10.1007/s10973-016-5756-4

    Article  CAS  Google Scholar 

  12. Prisacariu C, Scortanu E (2011) Influence of the type of chain extender and urethane group content on the mechanical properties of polyurethane elastomers with flexible hard segments. High Perform Polym 23(4):308–313. https://doi.org/10.1177/0954008311405696

    Article  CAS  Google Scholar 

  13. Pandya MV, Deshpande DD, Hundiwale DG, Kapadi UR (1987) Cast polyurethanes: effect of chain extenders on thermal mechanical and dynamic mechanical properties. J Macromol Sci Part A Chem 24(5):527–538. https://doi.org/10.1080/00222338708068139

    Article  Google Scholar 

  14. Lee U-J, Shin S-R, Noh H, Song H-B, Kim J, Lee D-S et al (2021) Rationally designed eugenol-based chain extender for self-healing polyurethane elastomers. ACS Omega 6(43):28848–28858. https://doi.org/10.1021/acsomega.1c03802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu WJ, Wang JJ, Zhang SY, Sun J, Qin CX, Dai LX (2018) Tuning chain extender structure to prepare high-performance thermoplastic polyurethane elastomers. RSC Adv 8(37):20701–20711. https://doi.org/10.1039/C8RA02784F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ornaghi HL, Monticeli FM, Neves RM, Agnol LD, Bianchi O (2023) Use of a response surface methodology to model thermal decomposition behavior of polyurethane. Polym Bull. https://doi.org/10.1007/s00289-023-04706-8

    Article  Google Scholar 

  17. Sui H, Ju X, Liu X, Cheng K, Luo Y, Zhong F (2014) Primary thermal degradation effects on the polyurethane film. Polym Degrad Stab 101:109–113. https://doi.org/10.1016/j.polymdegradstab.2013.11.021

    Article  CAS  Google Scholar 

  18. Ourique PA, Ornaghi FG, Ornaghi HL, Wanke CH, Bianchi O (2019) Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil. J Therm Anal Calorim 137(6):1969–1979. https://doi.org/10.1007/s10973-019-08089-9

    Article  CAS  Google Scholar 

  19. Nishiyama Y, Kumagai S, Motokucho S, Kameda T, Saito Y, Watanabe A et al (2020) Temperature-dependent pyrolysis behavior of polyurethane elastomers with different hard- and soft-segment compositions. J Anal Appl Pyrolysis 145:104754. https://doi.org/10.1016/j.jaap.2019.104754

    Article  CAS  Google Scholar 

  20. Chuang FS, Tsen WC, Shu YC (2004) The effect of different siloxane chain-extenders on the thermal degradation and stability of segmented polyurethanes. Polym Degrad Stab 84(1):69–77. https://doi.org/10.1016/j.polymdegradstab.2003.10.002

    Article  CAS  Google Scholar 

  21. Hu W, Koberstein JT (1994) The effect of thermal annealing on the thermal properties and molecular weight of a segmented polyurethane copolymer. J Polym Sci Part B Polym Phys 32(3):437–446. https://doi.org/10.1002/polb.1994.090320304

    Article  CAS  Google Scholar 

  22. Ryan AJ, Macosko CW, Bras W (1992) Order-disorder transition in a block copolyurethane. Macromolecules 25(23):6277–6283. https://doi.org/10.1021/ma00049a026

    Article  CAS  Google Scholar 

  23. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34(10):1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

    Article  CAS  Google Scholar 

  24. International A. Standard Test Method for Thermal Endurance of Film-Insulated Round Magnet Wire. West Conshohocken: ASTM; 2021. p. 9.

  25. Hondred PR, Bowler N, Kessler MR (2013) Electrothermal lifetime prediction of polyimide wire insulation with application to aircraft. J Appl Polym Sci 130(3):1639–1644. https://doi.org/10.1002/app.39304

    Article  CAS  Google Scholar 

  26. Monticeli FM, Neves RM, Ornaghi Júnior HL (2021) Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose 28(4):1961–1971. https://doi.org/10.1007/s10570-021-03684-2

    Article  Google Scholar 

  27. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Sympo 6(1):183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  28. Muravyev NV, Monogarov KA, Asachenko AF, Nechaev MS, Ananyev IV, Fomenkov IV et al (2017) Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Phys Chem Chem Phys 19(1):436–449. https://doi.org/10.1039/C6CP06498A

    Article  CAS  Google Scholar 

  29. Muravyev NV, Pivkina AN, Koga N (2019) Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules 24(12):2298. https://doi.org/10.3390/molecules24122298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. International A. Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data. West Conshohocken 2010. p. 4.

  31. Ornaghi HL, Neves RM, Monticeli FM (2021) Application of the artificial neural network (ANN) approach for prediction of the kinetic parameters of lignocellulosic fibers. Textiles 1(2):258–267. https://doi.org/10.3390/textiles1020013

    Article  Google Scholar 

  32. Son TW, Lee DW, Lim SK (1999) Thermal and phase behavior of polyurethane based on chain extender, 2,2-Bis-[4-(2-hydroxyethoxy)phenyl]propane. Polym J 31(7):563–568. https://doi.org/10.1295/polymj.31.563

    Article  CAS  Google Scholar 

  33. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I et al (2007) Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28(36):5407–5417. https://doi.org/10.1016/j.biomaterials.2007.08.035

    Article  CAS  PubMed  Google Scholar 

  34. Puszka A, Kultys A (2017) New thermoplastic polyurethane elastomers based on aliphatic diisocyanate. J Therm Anal Calorim 128(1):407–416. https://doi.org/10.1007/s10973-016-5923-7

    Article  CAS  Google Scholar 

  35. Miller JA, Lin SB, Hwang KK, Wu K, Gibson P, Cooper SL (1985) Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution. Macromolecules 18(1):32–44. https://doi.org/10.1021/ma00143a005

    Article  CAS  Google Scholar 

  36. Yildirim E, Yurtsever M (2014) The role of diisocyanate and soft segment on the intersegmental interactions in urethane and urea based segmented copolymers: A DFT study. Comput Theor Chem 1035:28–38. https://doi.org/10.1016/j.comptc.2014.02.021

    Article  CAS  Google Scholar 

  37. Heikens D, Meijers A, Von Reth P (1968) The difference in mechanical properties of fibres of linear polyesterurethanes, prepared with different diamines. Polymer 9:15–18. https://doi.org/10.1016/0032-3861(68)90004-9

    Article  CAS  Google Scholar 

  38. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications––a review. RSC Adv 6(115):114453–114482. https://doi.org/10.1039/C6RA14525F

    Article  CAS  Google Scholar 

  39. Li Y, Ren Z, Zhao M, Yang H, Chu B (1993) Multiphase structure of segmented polyurethanes: effects of hard-segment flexibility. Macromolecules 26(4):612–622. https://doi.org/10.1021/ma00056a010

    Article  CAS  Google Scholar 

  40. Ramesh S, Rajalingam P, Radhakrishnan G (1991) Chain-extended polyurethanes—synthesis and characterization. Polym Int 25(4):253–256. https://doi.org/10.1002/pi.4990250409

    Article  CAS  Google Scholar 

  41. Kultys A, Rogulska M, Pikus S, Skrzypiec K (2009) The synthesis and characterization of new thermoplastic poly (carbonate-urethane) elastomers derived from HDI and aliphatic–aromatic chain extenders. Eur Polymer J 45(9):2629–2643. https://doi.org/10.1016/j.eurpolymj.2009.06.003

    Article  CAS  Google Scholar 

  42. Terban MW, Rl Dabbous, Debellis AD, Pöselt E, Billinge SJ (2016) Structures of hard phases in thermoplastic polyurethanes. Macromolecules. 49(19):7350–7358. https://doi.org/10.1021/acs.macromol.6b00889

    Article  CAS  Google Scholar 

  43. Prisacariu C, Scortanu E (2008) Morphology of polyurethanes based on the chain extender ethylenglicol and aromatic flexible diisocianates, as revealed by scanning electron microscopy. Rev Roum Chim 53(9):821–825

    CAS  Google Scholar 

  44. Camberlin Y, Pascault JP (1983) Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas. J Polym Sci Polym Chem Ed 21(2):415–423. https://doi.org/10.1002/pol.1983.170210211

    Article  CAS  Google Scholar 

  45. Gallu R, Méchin F, Dalmas F, Gérard J-F, Perrin R, Loup F (2020) On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU. Polymer. 207:122882. https://doi.org/10.1016/j.polymer.2020.122882

    Article  CAS  Google Scholar 

  46. Dall Agnol L, Dias FTG, Bianchi O (2023) Photoactive coating based on waterborne polyurethane and carbon quantum dots as a prevention strategy for bacterial resistance. Progress in Organic Coatings. 179:107492. https://doi.org/10.1016/j.porgcoat.2023.107492

    Article  CAS  Google Scholar 

  47. Simon J, Barla F, Kelemen-Haller A, Farkas F, Kraxner M (1988) Thermal stability of polyurethanes. Chromatographia 25(2):99–106. https://doi.org/10.1007/BF02259024

    Article  CAS  Google Scholar 

  48. Christenson EM, Anderson JM, Hiltner A (2006) Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. J Biomed Mater Res, Part A 76A(3):480–490. https://doi.org/10.1002/jbm.a.30506

    Article  CAS  Google Scholar 

  49. Schubert MA, Wiggins MJ, Anderson JM, Hiltner A (1997) Comparison of two antioxidants for poly(etherurethane urea) in an accelerated in vitro biodegradation system. J Biomed Mater Res 34(4):493–505. https://doi.org/10.1002/(SICI)1097-4636(19970315)34:4%3c493::AID-JBM10%3e3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  50. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113(1):80–118. https://doi.org/10.1021/cr300195n

    Article  CAS  PubMed  Google Scholar 

  51. Dallé D, Hansen B, Zattera AJ, Ornaghi HL, Monticeli FM, Catto AL et al (2022) The use of the artificial neural network (ANN) for modeling of thermogravimetric curves of tobacco stalk waste exposed to alkaline treatment. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2051670

    Article  Google Scholar 

Download references

Acknowledgements

OB thanks for the financial support from National Council for Scientific and Technological Development (CNPq) fellows (grant numbers 308567/2018-8 and 305814/2021-4). CMG thanks UBE Chemical Europe for partial financial help and for supplying polycarbonate diol samples.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, investigation, methodology, HLO; data curation, methodology, AN; conceptualization, writing—review and editing, investigation, MA; writing—review and editing, investigation, CMG; conceptualization, writing—review and editing, supervision, funding acquisition, OB. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Clara M. Gómez or Otávio Bianchi.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ornaghi, H.L., Nohales, A., Asensio, M. et al. Effect of chain extenders on the thermal and thermodegradation behavior of carbonatodiol thermoplastic polyurethane. Polym. Bull. 81, 2267–2286 (2024). https://doi.org/10.1007/s00289-023-04812-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04812-7

Keywords

Navigation