Skip to main content
Log in

Tunable release of poly(butylenes adipate-co-terephthalate)/poly(lactic acid) blend-based antibacterial bionanocomposites: comparative study of modified montmorillonite and graphene nanopletelets

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of antibacterial biodegradable polymers is of great importance nowadays in medical applications. In this manuscript, poly(butylenes adipate-co-terephthalate)/poly(lactic acid) blend-based antibacterial bionanocomposites were prepared by melt-processing. We use organically modified montmorillonite (MMT) and graphene nanoplatelets (GNP) as antibacterial property enhancers which are both processing platelike structure, while ciprofloxacin hydrochloride (CFX·HCl) was chosen as a biocide. Either MMT or GNP increases the antibacterial properties during the whole study and tunes the release of CFX·HCl from the bionanocomposites. This was proven by agar diffusion tests and antimicrobial release measurements. The morphology of the bionanocomposites was conducted by using scanning and transmission electron microscopies, and evidence of exfoliation was observed. Contact angle and water uptake of the bionanocomposites were studied showing hydrophilic performance and more percentage water uptake. The final effect on mechanical and blood compatibility was also investigated. The results reveal excellent possibility of using MMT- and GNP-modified PLA/PBAT polymer blends to tune antibacterial properties for specific biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chapi S (2021) Influence of Co2+ on the structure, conductivity, and electrochemical stability of poly(ethylene oxide)-based solid polymer electrolytes: energy storage devices. J Electronic Mater 50(3):1558–1571

    Article  CAS  Google Scholar 

  2. Babaladimath G, Chapi S (2018) Microwave-assisted synthesis, characterization of electrical conducting and electrochemical xanthan gum-graft-polyaniline. J Mater Sci Mater El 29:11159–11166

    Article  CAS  Google Scholar 

  3. Chapi S (2020) Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating–Materials for single-layer devices. J Sci Adv Mater Dev 5:322–329

    Google Scholar 

  4. Scaffaro R, Lopresti F, Marino A, Nostro A (2018) Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Appl Microbiol Biotechnol 102(18):7739–7756

    Article  PubMed  CAS  Google Scholar 

  5. Chang C-T, Chen Y-T, Hsieh Y-K, Girsang SP, Wang RS, Chang Y-C (2021) Dual-functional antibiofilm polymer composite for biodegradable medical devices. Mater Sci Eng C 123:111985

    Article  CAS  Google Scholar 

  6. Salahuddin N, Abdelwahab M, Gaber M, Elneanaey S (2020) Synthesis and design of Norfloxacin drug delivery system based on PLA/TiO2 nanocomposites: Antibacterial and antitumor activities. Mater Sci Eng C 108:110337

    Article  CAS  Google Scholar 

  7. Ballesteros CAS, Correab DS, Zucolotto V (2020) Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control. Mater Sci Eng C 107:110334

    Article  CAS  Google Scholar 

  8. Rodríguez-Tobíasa H, Morales G, Grande D (2019) Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater Sci Eng C 101:306–322

    Article  Google Scholar 

  9. Ferreira FV, Mariano M, Lepesqueur LSS, Pinheiro IF, Santos LG, Burga-Sánchez J (2019) Silver nanoparticles coated with dodecanethiol used as fillers in noncytotoxic and antifungal PBAT surface based on nanocomposites. Mater Sci Eng C 98:800–807

    Article  CAS  Google Scholar 

  10. Moustafa H, Kissi NE, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141

    Article  PubMed  CAS  Google Scholar 

  11. Scaffaro R, Botta L, Maio A, Gallo G (2017) PLA graphene nanoplatelets nanocomposites: Physical properties and release kinetics of an antimicrobial agent. Compos Part B 109:138–146

    Article  CAS  Google Scholar 

  12. Scaffaro R, Maio A, Botta L, Gulino EF, Gulli D (2019) Tunable release of Chlorhexidine from polycaprolactone-based filaments containing graphene nanoplatelets. Eur Polym J 110:221–232

    Article  CAS  Google Scholar 

  13. Ma P, Jiang L, Yu M, Dong W, Chen M (2016) Green antibacterial nanocomposites from poly(lactide)/poly(butylene adipate-co-terephthalate)/nanocrystal cellulose-silver nanohybrids. ACS Sustain Chem Eng 4:6417–6426

    Article  CAS  Google Scholar 

  14. Scaffaro R, Maio A, Lopresti F (2019) Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos Sci Technol 169:60–69

    Article  CAS  Google Scholar 

  15. Fukushima K, Wu M-H, Bocchini S, Rasyida A, Yang M-C (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32(6):1331–1351

    Article  CAS  Google Scholar 

  16. Ribeiro Neto AR, de Paula ACC, Martins TMM, Goes AM, Averous L, Schlatter G (2015) Poly(butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym Degrad Stab 120:61–69

    Article  CAS  Google Scholar 

  17. Silva AS, Rodrigues BVM, Oliveira FC, Carvalho JO, de Vasconcellos LMR, de Araújo JCR (2019) Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res 26:53

    Article  Google Scholar 

  18. Fukushima K, Rasyida A, Yang M-C (2013) Biocompatibility of organically modified nanocomposites based on PBAT. J Polym Res 20:302

    Article  Google Scholar 

  19. Santana-Melo GF, Rodrigues BVM, da Silva E, Ricci R, Marciano FR, Webster TJ (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B 155:544–552

    Article  CAS  Google Scholar 

  20. Rahimi SK, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromol 18(7):2179–2194

    Article  Google Scholar 

  21. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)— Mass production, processing, industrial applications, and end of life. Adv Drug Deliver Rev 107:333–366

    Article  CAS  Google Scholar 

  22. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliver Rev 107:367–392

    Article  CAS  Google Scholar 

  23. Zhao Y, Zhu B, Wang Y, Liu C, Shen C (2019) Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater Sci Eng C 105:110041

    Article  CAS  Google Scholar 

  24. Chalermpanaphan V, Choochottiros C (2021) Synthesis of unsaturated aliphatic polyester-based copolymer: effect on the ductility of PLA blend and crosslink. Polym Bull 79:2003–2017

    Article  Google Scholar 

  25. Wang Y, Liu L, Qin C, Wang Y, Liu C, Shen C (2021) Effect of a small amount of poly(ethylene oxide) on crystal polymorphism of poly(l-lactic acid). Polym Bull 78:6837–6846

    Article  CAS  Google Scholar 

  26. Wang BW, Liu H, Ying J, Liu CT, Shen CY, Wang YM (2023) Effect of physical aging on heterogeneity of poly(ε-caprolactone) toughening poly(lactic acid) probed by nanomechanical mapping. Chin J Polym Sci 41:143–152

    Article  CAS  Google Scholar 

  27. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26:330–341

    Article  CAS  Google Scholar 

  28. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199–207

    Article  Google Scholar 

  29. Nakayama D, Wu F, Mohanty AK, Hirai S, Misra M (2018) Biodegradable composites developed from PBAT/PLA binary blends and silk powder: compatibilization and performance evaluation. ACS Omega 3(10):12412–12421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sirisinha K, Somboon W (2012) Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylenes adipate-co-terephthalate) and poly(lactide). J Appl Polym Sci 124:4986–4992

    Article  CAS  Google Scholar 

  31. Lu X, Zhao J, Yang X, Xiao P (2017) Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polym Test 60:58–67

    Article  CAS  Google Scholar 

  32. Tiimob BJ, Mwinyelle G, Abdela W, Samuel T, Jeelani S, Rangari VK (2017) Nanoengineered eggshell-silver tailored copolyester polymer blend film with antimicrobial properties. J Agric Food Chem 65(9):1967–1976

    Article  PubMed  CAS  Google Scholar 

  33. Chen K, Zhou C, Liu H, Wang Y (2022) Physical aging-induced embrittlement of PLA/PBAT blends probed by tensile test and AFM nanomechanical mapping. Mater Lett 326:132938

    Article  CAS  Google Scholar 

  34. Hua S, Yang H, Wang W, Wang A (2010) Controlled release of ofloxacin from chitosan–montmorillonite hydrogel. Appl Clay Sci 50:112–117

    Article  CAS  Google Scholar 

  35. Lai S-M, Wu S-H, Lin G-G, Don T-M (2014) Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites. Eur Polym J 52:193–206

    Article  CAS  Google Scholar 

  36. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, Shen C (2020) Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol 151:628–634

    Article  PubMed  CAS  Google Scholar 

  37. Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614

    Article  CAS  Google Scholar 

  38. Rediguieri CF, Sassonia RC, Dua K, Kikuchi IS, Pinto TJA (2016) Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur Polym J 82:181–195

    Article  CAS  Google Scholar 

  39. Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer-clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026

    Article  CAS  Google Scholar 

  40. Saha NR, Sarkar G, Roy I, Rana D, Bhattacharyya A, Adhikari A (2016) Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym 136:1218–1227

    Article  PubMed  CAS  Google Scholar 

  41. Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces 84(1):163–171

    Article  PubMed  CAS  Google Scholar 

  42. Ali M, Horikawa S, Venkatesh S, Saha J, Hong JW, Byrne ME (2007) Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J Control Release 124:154–162

    Article  PubMed  CAS  Google Scholar 

  43. Ferrero C, Massuelle D, Doelker E (2010) Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release 141:223–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52073261, U1704162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaming Wang or Chuntai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, K., Zhou, C. et al. Tunable release of poly(butylenes adipate-co-terephthalate)/poly(lactic acid) blend-based antibacterial bionanocomposites: comparative study of modified montmorillonite and graphene nanopletelets. Polym. Bull. 81, 1875–1890 (2024). https://doi.org/10.1007/s00289-023-04803-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04803-8

Keywords

Navigation