Skip to main content
Log in

Investigation on the influence of PEG end groups on the ring-banded spherulite morphology of PEG/PLLA blends

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The morphology and microstructure of crystalline blends of poly (ethylene glycol) (PEG) and poly (L-lactic acid) (PLLA) were examined using polarized optical microscopy (POM) and scanning electron microscopy (SEM). As PEG was in the melt state during PLLA crystallization, it was rejected from the PLLA bundles. The size of PEG inclusions determined by their extraction is around 1 μm. The PEG/PLLA blends exhibited not only spherulites with Maltese crosses but also distinct extinction rings. The formation of ring-banded spherulites and the periodic distance between the rings were related to the degree of supercooling of the polymer. The ring-banded structure was easily obtained at a high PEG content (70 wt%) and high PLLA crystallization temperature (120 °C). The end group of PEG significantly affected the morphology of PEG/PLLA blends. PLLA blended with PEG containing both end groups as CH3 exhibited the greatest melting temperature depression and lowest degree of supercooling of PLLA, implying the formation of ring-banded spherulites with the smallest PEG content (30 wt%) and lowest PLLA crystallization temperature (85 °C). PEG morphology was also observed using POM after the formation of PLLA crystals. Because PLLA crystals confined the formation of PEG crystals, the chain growth direction of PEG was in association with that of PLLA. Therefore, a brighter POM image was obtained on PEG crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Robeson L (2014) Historical perspective of advances in the science and technology of polymer blends. Polymers 6:1251–1265

    Article  Google Scholar 

  2. Xie L, Zhu Y (2018) Tune the phase morphology to design conductive polymer composites: a review. Polym Compos 39:2985–2996

    Article  CAS  Google Scholar 

  3. Shamsuri AA, Jamil SNAM (2021) Application of quaternary ammonium compounds as compatibilizers for polymer blends and polymer composites—a concise review. Appl Sci 11:3167

    Article  CAS  Google Scholar 

  4. Dubey KA, Chaudhari CV, Bhardwaj YK, Varshney L (2017) Polymers, blends and nanocomposites for implants, scaffolds and controlled drug release applications. Adv Biomater Biomed Appl 66:1–44

    Article  Google Scholar 

  5. Nyamweya NN (2021) Applications of polymer blends in drug delivery. Future J Pharm Sci 7:18

    Article  Google Scholar 

  6. Liberelle B, Dil EJ, Sabri F, Favis BD, Crescenzo GD, Virgilio N (2021) Immobilizing enzyme biocatalysts onto porous polymer monoliths prepared from continuous polymer blends. ACS Appl Polym Mater 3:6359–6365

    Article  CAS  Google Scholar 

  7. Yong WF, Zhang H (2021) Recent advances in polymer blend membranes for gas separation and pervaporation. Prog Mater Sci 116:100713

    Article  CAS  Google Scholar 

  8. Runt JP, Martynowicz LM (1986) Multicomponent polymer materials. American Chemical Society, Washington DC

    Google Scholar 

  9. Lee JK, Han CD (1999) Evolution of polymer blend morphology during compounding in an internal mixer. Polymer 40:6277–6296

    Article  CAS  Google Scholar 

  10. Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation. Membranes 36:1838–1846

    CAS  Google Scholar 

  11. Sam ST, Nuradibah MA, Ismail H, Noriman NZ, Ragunathan S (2014) Recent advances in polyolefins. Nat Polym Blends Used Packag Appl 53:631–644

    CAS  Google Scholar 

  12. Schultz JM (2010) The crystallization and morphology of melt-miscible polymer blends. Front Chem China 5:262–276

    Article  Google Scholar 

  13. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3:77–96

    Article  Google Scholar 

  14. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C (2019) Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360

    Article  CAS  PubMed  Google Scholar 

  15. Lee SY, Chin IJ, Jung JS (1999) Crystallization behavior of poly(l-lactide)-poly(ethylene glycol) multiblock copolymers. Eur Polym J 35:2147–2153

    Article  CAS  Google Scholar 

  16. Luckachan GE, Pillai CKS (2011) Biodegradable polymers-a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  17. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  PubMed  Google Scholar 

  18. Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116

    Article  CAS  Google Scholar 

  19. Mohapatra AK, Mohanty S, Nayak SK (2014) Effect of PEG on PLA/PEG blend and its nanocomposites: a study of thermo-mechanical and morphological characterization. Polym Compos 35:283–293

    Article  CAS  Google Scholar 

  20. Li F-J, Zhang S-D, Liang J-Z, Wang J-Z (2015) Effect of polyethylene glycol on the crystallization and impact properties of polylactide-based blends. Polym Adv Technol 26:465–475

    Article  CAS  Google Scholar 

  21. Takhulee A, Takahashi Y, Vao-soongnern V (2016) Molecular simulation and experimental studies of the miscibility of polylactic acid/polyethylene glycol blends. J Polym 24:8

    Google Scholar 

  22. Ozkoc G, Kemaloglu S (2009) Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 114:2481–2487

    Article  CAS  Google Scholar 

  23. Lai W-C, Liau W-B, Lin T-T (2004) The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer 45:3073–3080

    Article  CAS  Google Scholar 

  24. Li FJ, Tan LC, Zhang SD, Zhu B (2016) Compatibility, steady and dynamic rheological behaviors of polylactide/poly(ethylene glycol) blends. J Appl Polym Sci 133:42919

    Article  Google Scholar 

  25. Guo J, Liu X, Liu M, Han M, Liu Y, Ji S (2021) Effect of molecular weight of poly (ethylene glycol) on plasticization of poly (ʟ-lactic acid). Polymer 223:123720

    Article  CAS  Google Scholar 

  26. Darie-Nita RN, Vasile C, Irimia A, Lipşa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133:43223

    Article  Google Scholar 

  27. Saini P, Arora M, RaviKumar MNV (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59

    Article  CAS  PubMed  Google Scholar 

  28. Ye L, Qiu J, Wu T, Shi X, Li Y (2014) Banded spherulite templated three-dimensional interpenetrated nanoporous materials. RSC Adv 4:43351–43356

    Article  CAS  Google Scholar 

  29. Ye L, Shi X, Ye C, Chen Z, Zeng M, You J, Li Y (2015) Crystallization-modulated nanoporous polymeric materials with hierarchical patterned surfaces and 3D interpenetrated internal channels. ACS Appl Mater Interfaces 7:6946–6954

    Article  CAS  PubMed  Google Scholar 

  30. Xiang ZY, Sarazin P, Favis BD (2009) Controlling burst and final drug release times from porous polylactide devices derived from co-continuous polymer blends. Biomacromol 10:2053–2066

    Article  CAS  Google Scholar 

  31. Wei Q, Fu Y, Zhang G, Yang D, Meng G, Sun S (2019) Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy 55:234–259

    Article  CAS  Google Scholar 

  32. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  33. Lu Z, Zhang B, Gong H, Li J (2021) Fabrication of hierarchical porous poly (l-lactide) (PLLA) fibrous membrane by electrospinning. Polymer 226:123797

    Article  CAS  Google Scholar 

  34. Shi Y, Jabarin SA (2001) Glass-transition and melting behavior of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) blends. J Appl Polym Sci 81:11–22

    Article  CAS  Google Scholar 

  35. Chen J, Yang D (2005) Phase behavior and rhythmically grown ring-banded spherulites in blends of liquid crystalline poly(aryl ether ketone) and poly(aryl ether ether ketone). Macromolecules 38:3371–3379

    Article  CAS  Google Scholar 

  36. Wang T, Wang H, Li H, Gan Z, Yan S (2009) Banded spherulitic structures of poly(ethylene adipate), poly(butylene succinate) and in their blends. Phys Chem Chem Phys 11:1619–1627

    Article  CAS  PubMed  Google Scholar 

  37. Ikehara T, Kataoka T, Inutsuka M, Jin R-H (2019) Chiral nucleating agents affecting the handedness of lamellar twist in the banded spherulites in poly(ε-caprolactone)/poly(vinyl butyral) blends. ACS Macro Lett 8:871–874

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Ye H, Zhang S, Guo B (2017) Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals 7:241

    Article  CAS  Google Scholar 

  39. Safandowska M, Rozanski A (2021) Ring-banded spherulites in polylactide and its blends. Polym Testing 100:107230

    Article  CAS  Google Scholar 

  40. Ye HM, Freudenthal JH, Tan M, Yang J, Kahr B (2019) Chiroptical differentiation of twisted chiral and achiral polymer crystals. Macromolecules 52:8514–8520

    Article  CAS  Google Scholar 

  41. Lovinger AJ (2020) Twisted crystals and the origin of banding in spherulites of semicrystalline polymers. Macromolecules 53:741–745

    Article  CAS  Google Scholar 

  42. Wang T, Li H, Schultz JM, Yan S (2011) Morphologies and deformation behavior of poly(vinylidene fluoride)/poly(butylene succinate) blends with variety of blend ratios and under different preparation conditions. Polym Chem 2:1688–1698

    Article  CAS  Google Scholar 

  43. Wen T, Sun HJ, Lotz B, Cheng SZD (2020) Scrolled/cylindrical solution-grown single crystals in form III of isotactic poly(1-butene). Macromolecules 53:7570–7579

    Article  CAS  Google Scholar 

  44. Xu J, Guo BH, Zhou JJ, Li L, Wu J, Kowalczuk M (2005) Observation of banded spherulites in pure poly(L-lactide) and its miscible blends with amorphous polymers. Polymer 46:9176–9185

    Article  CAS  Google Scholar 

  45. Nurkhamidah S, Woo EM (2011) Effects of crystallinity and molecular weight on crack behavior in crystalline poly(L-lactic acid). J Appl Polym Sci 122:1976–1985

    Article  CAS  Google Scholar 

  46. Zhang QL, Fan JS, Feng JC (2015) Formation of banded spherulites and the temperature dependence of the band space in olefin block copolymer. RSC Adv 5:43155–43163

    Article  CAS  Google Scholar 

  47. Wang Z, Wang X, Yu D, Jiang B (1997) The formation of ring-banded spherulites of poly(ɛ-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile). Polymer 38:5897–5901

    Article  CAS  Google Scholar 

  48. Shin D, Shin K, Aamer KA, Tew GN, Russell TPA (2005) Morphological study of a semicrystalline poly(l-lactic acid-b-ethylene oxide-b-l-lactic acid) triblock copolymer. Macromolecules 38:104–109

    Article  CAS  Google Scholar 

  49. Banpean A, Sakurai S (2021) Confined crystallization of poly(ethylene glycol) in spherulites of Poly (L-lactic acid) in a PLLA/PEG blend. Polymer 215:123370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chi Lai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, WC., Liau, WB., Yang, LY. et al. Investigation on the influence of PEG end groups on the ring-banded spherulite morphology of PEG/PLLA blends. Polym. Bull. 81, 1803–1820 (2024). https://doi.org/10.1007/s00289-023-04787-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04787-5

Keywords

Navigation