Skip to main content
Log in

Enhanced antifouling and surface properties of polymeric membrane via surface modification for treatment of oily wastewater

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN) is a widely used ultrafiltration (UF) membrane material due to its advantages over other conventional polymers. However, its hydrophobic nature limits its applicability i.e. anti-fouling property and efficacy of water permeability is very low. In this study, to obtain high rejection and permeation, surface porosity and good pore structure, PAN membranes are prepared by physically blending with bentonite inorganic fillers to improve its hydrophilicity. The membranes are prepared via phase inversion method and characterized using SEM, and ATR-FTIR to evaluate the surface morphology and to analyze the effect of the presence of bentonite particles in varied concentrations on the membrane properties. The performance of the membranes is studied through Pure Water Flux (PWF), and anti fouling property. Then, the membrane efficiency is measured via oily feed solution. Amongst prepared membranes, the composition of PAN (15 wt%), NMP (84.5 wt%) and bentonite (0.5 wt%) gives maximum removal of oil with increased porosity, equilibrium water content (EWC), PWF and hydrophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A:

Membrane area (cm2)

DI:

Deionized water

DRT :

Decline ratio

EWC:

Equilibrium water content

FRR:

Flux recovery ratio

J o :

Oil–water permeate flux (L m2 h1)

J w :

Pure water flux (L m2 h1)

J c :

Pure water flux obtained after cleaning (L m2 h1)

l :

Thickness of the membrane (cm)

M n :

Number average molecular weight

M w :

Weight average molecular weight

M1:

PSF (15 wt%)

M2:

PSF/NMP/Bentonite (0.2 wt%)

M3:

PSF/NMP/Bentonite (0.5 wt%)

M4:

PSF/NMP/Bentonite (1 wt%)

MMM:

Mixed matrix membrane

NMP:

N-Methyl-2-Pyrrolidone

P :

Operational pressure (KPa)

PAN:

Polyacrylonitrile

PWF:

Pure water flux

Q :

Volumetric flow rate of the permeate water (ms1)

r m :

Mean pore radius (nm)

R m :

Membrane hydraulic resistance (m1)

t :

Time duration of permeate (h)

W d :

Weight of the dry sample (g)

W w :

Weight of the wet sample (g)

W c :

Equilibrium water content

ε :

Porosity of the membrane

µ :

Water viscosity (Pa s)

ρ :

Density of pure water (Kg cm3)

References

  1. Koop SHA, Leeuwen VCJ (2017) The challenges of water, waste and climate change in cities. Environ Dev Sustain 19:385–418. https://doi.org/10.1007/s10668-016-9760-4

    Article  Google Scholar 

  2. Levy BS, Sidel VW (2011) Water rights and water fights: preventing and resolving conflicts before they boil over. Am J Public Health 101:778–780. https://doi.org/10.2105/AJPH.2010.194670

    Article  PubMed  PubMed Central  Google Scholar 

  3. Obotey EE, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10:89. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  4. Francesca M, Enrico D (2017) Membrane engineering for green process engineering. Engineering 3:290–298. https://doi.org/10.1016/J.ENG.2017.03.026

    Article  Google Scholar 

  5. Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10:89. https://doi.org/10.3390/membranes10050089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sandu T, Sârbu A, Căprărescu S, Stoica E-B, Iordache T-V, Chiriac A-L (2022) Polymer membranes as innovative means of quality restoring for wastewater bearing heavy metals. Membranes 12:1179. https://doi.org/10.3390/membranes12121179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gurreri L, Tamburini A, Cipollina A, Micale G (2020) Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: a systematic review on progress and perspectives. Membranes 10:146. https://doi.org/10.3390/membranes10070146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gul A, Hruza J, Yalcinkaya F (2021) Fouling and chemical cleaning of microfiltration membranes: a mini-review. Polymers 13:846. https://doi.org/10.3390/polym13060846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garba MD, Usman M, Mazumder MA, Jafar A-A, Amir I (2019) Complexing agents for metal removal using ultrafiltration membranes: a review. Environ Chem Lett 1195–1208(17):3. https://doi.org/10.1007/s10311-019-00861-5

    Article  CAS  Google Scholar 

  10. Suhalim NS, Kasim N, Mahmoudi E, Shamsudin IJ, Mohammad AW, Mohamed Zuki F, Jamari NL-A (2022) Rejection mechanism of ionic solute removal by nanofiltration membranes: an overview. Nanomaterials 12:437. https://doi.org/10.3390/nano12030437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wenten IG (2016) Khoiruddin, reverse osmosis applications: prospect and challenges. Desalination 391:112–125. https://doi.org/10.1016/j.desal.2015.12.011

    Article  CAS  Google Scholar 

  12. Juve J-MA, Frederick MS, Christensen YW, Wei Z (2022) Electrodialysis for metal removal and recovery: a review. Chem Eng J 435(2):134857. https://doi.org/10.1016/j.cej.2022.134857

    Article  CAS  Google Scholar 

  13. Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N (2019) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep Purif. Technol. 213:465–499. https://doi.org/10.1016/j.seppur.2018.12.050

    Article  CAS  Google Scholar 

  14. Sandu T, Chiriac AL, Tsyntsarski B, Stoycheva I, Căprărescu S, Damian CM, Iordache TV, Pătroi D, Marinescu V, Sârbu A (2021) Advanced hybrid membranes for efficient nickel retention from simulated wastewater. Polym Int 70:866–876. https://doi.org/10.1002/pi.6183

    Article  CAS  Google Scholar 

  15. Nagandran S, Goh PS, Ismail AF, Wong T-W, Binti Wan Dagang WRZ (2020) The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry 12:239. https://doi.org/10.3390/sym12020239

    Article  CAS  Google Scholar 

  16. Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Eftimie Totu E, Modrogan C, Chiriac A-L, Nicolae CA (2020) Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 12:1792. https://doi.org/10.3390/polym12081792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Othman NH, Alias NH, Fuzil NS, Marpani F et al (2022) A review on the use of membrane technology systems in developing countries. Membranes 12:30. https://doi.org/10.3390/membranes12010030

    Article  CAS  Google Scholar 

  18. Yuan T, Zhang L, Shan C et al (2020) Enhancing the permeance and antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic capsaicin-mimic moieties. J Membr Sci 610:118–233. https://doi.org/10.1016/j.memsci.2020.118233

    Article  CAS  Google Scholar 

  19. Guo H, Wang Z, Liu Y et al (2020) Synthesis and characterization of novel zwitterionic poly (aryl ether oxadiazole) ultrafiltration membrane with good antifouling and antibacterial properties. J Membr Sci 611:118337. https://doi.org/10.1016/j.memsci.2020.118337

    Article  CAS  Google Scholar 

  20. Chilvers BL, Morgan KJ, White BJ (2021) Sources and reporting of oil spills and impacts on wildlife 1970–2018. Environ Sci Pollut Res 28:754–762. https://doi.org/10.1007/s11356-020-10538-0

    Article  CAS  Google Scholar 

  21. Yu L, Han M, He F (2017) A review of treating oily wastewater. Arab J Chem 10:1913–1922. https://doi.org/10.1016/j.arabjc.2013.07.020

    Article  CAS  Google Scholar 

  22. Gul A, Hruza J, Yalcinkaya F (2021) Fouling and chemical cleaning of microfiltration membranes: a mini-review. Polymers (Basel) 13:846

    Article  CAS  PubMed  Google Scholar 

  23. Romay M, Diban N, Rivero M et al (2020) Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes. Catalysts 10:570. https://doi.org/10.3390/catal10050570

    Article  CAS  Google Scholar 

  24. Kahrs C, Gühlstorf T, Schwellenbach J (2019) Influences of different preparation variables on polymeric membrane formation via nonsolvent induced phase separation. J Appl Polym Sci 137:48852. https://doi.org/10.1002/app.48852

    Article  CAS  Google Scholar 

  25. Rodrigues R, Mierzwa JC, Vecitis CD (2019) Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment. J Water Process Eng 31:100788. https://doi.org/10.1016/J.JWPE.2019.100788

    Article  Google Scholar 

  26. Manikandan GN, Helen KM (2021) Performance studies of GO/PF127 incorporated polyetherimide ultrafiltration membranes for the rejection of oil from oil wastewater. Chem Eng Res Des 168:214–226. https://doi.org/10.1016/j.cherd.2021.01.019

    Article  CAS  Google Scholar 

  27. Deepa K, Arthanareeswaran G (2022) Influence of various shapes of alumina nanoparticle in integrated polysulfone membrane for separation of lignin from woody biomass and salt rejection. Environ Res 209:112820. https://doi.org/10.1016/j.envres.2022.112820

    Article  CAS  PubMed  Google Scholar 

  28. Yalcinkaya F, Boyraz E, Maryska J, Kucerova K (2020) A review on membrane technology and chemical surface modification for the oily wastewater treatment. Materials 13:493. https://doi.org/10.3390/ma13020493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad T, Guria C, Mandal A (2018) Synthesis, characterization and performance studies of mixed-matrix poly (vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater. Process Saf Environ 116:703–717. https://doi.org/10.1016/j.psep.2018.03.033

    Article  CAS  Google Scholar 

  30. Jamil A, Zulfiqar M, Arshad U et al (2020) Development and performance evaluation of cellulose acetate-bentonite mixed matrix membranes for CO2 separation. Adv Polym Technol 2020:8855577. https://doi.org/10.1155/2020/8855577

    Article  CAS  Google Scholar 

  31. Shi H, Burmeister DM, Frost A, Patterson DA, James B (2018) Towards continuous wine fining: Materials characterisation and crossflow performance testing of polymer–bentonite mixed matrix membranes. Asia-Pac J Chem Eng. 13:e2148. https://doi.org/10.1002/apj.2148

    Article  CAS  Google Scholar 

  32. Sri ASM, Kausalya R, Kaleekkal NJ, Rana D, Nagendran A (2017) BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes. J Environ Chem Eng 5:2937–2943. https://doi.org/10.1016/j.jece.2017.05.051

    Article  CAS  Google Scholar 

  33. Beril MJS, Noel JK, Nithya R, Rana D, Nagendran A, Mohan D (2020) Improved permeation, separation and antifouling performance of customized polyacrylonitrile ultrafiltration membranes. Chem Eng Res Des 159:157–169. https://doi.org/10.1016/j.cherd.2020.04.014

    Article  CAS  Google Scholar 

  34. Manikandan GN, Jayaraman K, Helen KM, Lima RM (2020) Antifouling properties of poly(vinylidene fluoride)-incorporated cellulose acetate composite ultrafiltration membranes. Korean J Chem Eng 37:2248–2261. https://doi.org/10.1007/s11814-020-0653-8

    Article  CAS  Google Scholar 

  35. Sirus Z, Ali AZ, Masoud R, Vahid V, Hadis Z (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Science 453:292–301. https://doi.org/10.1016/j.memsci.2013.10.070

    Article  CAS  Google Scholar 

  36. Gnanasekaran G, Balaguru S, Arthanareeswaran G, Das DB (2019) Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep Sci Technol 54:434–446. https://doi.org/10.1080/01496395.2018.1508232

    Article  CAS  Google Scholar 

  37. Patel H, Ray S, Patel A, Patel K, Trivedi U (2020) Enhanced lipase production from organic solvent tolerant pseudomonas aeruginosa UKHL1 and its application in oily waste-water treatment. Biocatal Agric Biotechnol 28:101731. https://doi.org/10.1016/j.bcab.2020.101731

    Article  Google Scholar 

  38. Lee H, Amy G, Cho J et al (2001) Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic water. Water Res 35:3301–3308

    Article  CAS  PubMed  Google Scholar 

  39. Hesamoddin R, Vahid V et al (2015) Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Sep Purif Technol 156:299–310. https://doi.org/10.1016/j.seppur.2015.10.015

    Article  CAS  Google Scholar 

  40. Pagidi A, Lukka TY, Arthanareeswaran G, Ismail AF, Jaafar J, Paul D (2015) Polymeric membrane modification using SPEEK and bentonite for ultrafiltration of dairy wastewater. J Appl Polym Sci. https://doi.org/10.1002/app.41651

    Article  Google Scholar 

  41. Soheil D, Masoud R, Sirus Z (2022) Novel antibacterial and antifouling PES nanofiltration membrane incorporated with green synthesized nickel-bentonite nanoparticles for heavy metal ions removal. Chem Eng J. https://doi.org/10.1016/j.cej.2021.134116

    Article  Google Scholar 

  42. Saja S, Bouazizi A, Achiou B et al (2020) Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal. J Eur Ceram Soc 40:2453–2462. https://doi.org/10.1016/j.jeurceramsoc.2020.01.057

    Article  CAS  Google Scholar 

  43. Shashikant K, Chandan G, Ajay M (2015) Synthesis, characterization and performance studies of polysulfone/bentonite nanoparticles mixed-matrix ultra-filtration membranes using oil field produced water. Sep Purif Technol 150:145–158. https://doi.org/10.1016/j.seppur.2015.06.029

    Article  CAS  Google Scholar 

  44. Beril MJS, Nithya D, Mohan D (2017) Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic pluronic F127/CaCO3for nanoparticles oil/water emulsion separation. J Colloid Surface 516:147–160. https://doi.org/10.1016/j.colsurfa.2016.12.008

    Article  CAS  Google Scholar 

  45. Guojun Z, Xue S, Jie L, Shulan J, Zhongzhou L (2010) Single-side hydrolysis of hollow fiber polyacrylonitrile membrane by an interfacial hydrolysis of a solvent-impregnated membrane. J Membr Sci 350:211–216. https://doi.org/10.1016/j.memsci.2009.12.030

    Article  CAS  Google Scholar 

  46. Mohammed K, Baolin D (2019) Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: a novel water uptake concept. Micropor Mesopor Mat 279:82–91. https://doi.org/10.1016/j.micromeso.2018.12.020

    Article  CAS  Google Scholar 

  47. Yoontaek O, Sangho L, Menachem E, Seockheon L, Seungkwan H (2014) Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis. J Membr Sci 465:159–166. https://doi.org/10.1016/j.memsci.2014.04.008

    Article  CAS  Google Scholar 

  48. Khayet M, Mengual JI, Matsuura T (2005) Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. J Membr Sci 252:101–113. https://doi.org/10.1016/j.memsci.2004.11.022

    Article  CAS  Google Scholar 

  49. Kumar P, Dixit S, Yadav VL (2019) Preparation of hydrophilic bentonite grafted mixed matrix polyvinylchloride membrane with superior hydrophilicity. Rasayan J Chem 12:707–718. https://doi.org/10.31788/RJC.2019.1225158

    Article  CAS  Google Scholar 

  50. Tzahi YC, Dean AV, Amy EC (2004) Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. J Membr Sci 228:5–16. https://doi.org/10.1016/j.memsci.2003.09.006

    Article  CAS  Google Scholar 

  51. SungJu I, Hyeonho L, Hojung R (2022) The fouling layers characteristics of osmotically driven membranes affect transport behaviors of reverse salt permeation and per-fluorinated compounds. Desalination 540:116001. https://doi.org/10.1016/j.desal.2022.116001

    Article  CAS  Google Scholar 

  52. Kezia B, Hocheol S, Jin S, Nanthi B, Thimmarajampet KJ, Ki-Hyun K (2019) A review on functional polymer-clay based nanocomposite membranes for treatment of water. J Hazard Mater 379:120584. https://doi.org/10.1016/j.jhazmat.2019.04.067

    Article  CAS  Google Scholar 

  53. Muhamad NAS, Mokhtar NM, Lau WJ, Ismail AF, Naim R (2022) Fouling studies on hydrophobic PVDF-bentonite hollow fiber membrane during membrane distillation of palm oil mill effluent. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2022.102969

    Article  Google Scholar 

  54. Junaidi NFD, Othman NH, Shahruddin MZ (2020) Fabrication and characterization of graphene oxide–polyethersulfone (GO–PES) composite flat sheet and hollow fiber membranes for oil–water separation. J Chem Technol Biotechnol 95:1308–1320. https://doi.org/10.1002/jctb.6366

    Article  CAS  Google Scholar 

  55. Soheil Z, Toraj M, Mohtada S (2019) Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. J Membr Sci 582:402–413. https://doi.org/10.1016/j.memsci.2019.04.020

    Article  CAS  Google Scholar 

  56. Henry JT, Charifa AH, Volodymyr VT, Anthony GF, Jia WC (2019) Membrane-based separation for oily wastewater: a practical perspective. Water Res 156:347–365. https://doi.org/10.1016/j.watres.2019.03.021

    Article  CAS  Google Scholar 

  57. Chen D, Gao F, Liu T, Kang J, Xu R, Cao Y, Xiang M (2021) Fabrication of anti-fouling thin-film composite reverse osmosis membrane via constructing heterogeneous wettability surface. J Appl Polym Sci. https://doi.org/10.1002/app.51256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Kalavathy Meyyappan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomathy Nainar, M., Purushothaman, G. & Meyyappan, H. Enhanced antifouling and surface properties of polymeric membrane via surface modification for treatment of oily wastewater. Polym. Bull. 81, 2197–2222 (2024). https://doi.org/10.1007/s00289-023-04772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04772-y

Keywords

Navigation