Skip to main content
Log in

Effect of coconut fibers chemically modified with alkoxysilanes on the crystallization, thermal, and dynamic mechanical properties of poly(lactic acid) composites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Currently, the use of composites, based on natural fibers and polymeric matrix, in diverse industrial sectors is gaining interest. The interaction between fibers and polymeric matrix is essential to have a composite with the desired thermal and mechanical properties. Nevertheless, most of the natural fibers do not have a good interaction with polymers and they need to be modified to enhance such interaction. Therefore, in this work, the chemical modification of coconut fibers, using different silanes agents like glycydoxipropyl trimetoxi slane (GLYMO), vinyl trimetoxi silane (VTMS), and tetraetoxi silane (TEOS) was carried out to promote the interfacial interaction with the polymeric matrix of poly (lactic acid) (PLA). The FTIR spectra confirmed the silanization of the fibers by detecting the bands related to Si–O–Si, at 1133 y 1106 cm−1, and Si–O–Cellulose bonds, at 1165 y 955 cm−1, as the product of the silanols reactions. The thermal stability was determined by thermal thermogravimetric analysis, which shows that the chemical modification of fibers increased their thermal stability regarding the fibers non-modified. On the other hand, the DSC showed that interfacial interactions between the fiber and PLA chains increased when the fiber was previously silanized because the silanes promoted the crystallinity of PLA from 48.95 to 60.08% with GLYMO, to 63.94 with VTMS and to 63.35 with TEOS. Regarding the crystallization study, the composites with VTMS presented higher activation energy at the beginning, but as the relative crystallinity increased, the polymer chains’ arrangement was facilitated, considerably increasing the elastic modulus of PLA by 325%. The increase in crystallinity due to the incorporation of the silanized fibers shifted the maximum Tan δ value toward lower temperatures, increasing the application window of the polymer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  2. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  PubMed  Google Scholar 

  3. Beltrán-Sanahuja A, Casado-Coy N, Simó-Cabrera L, Sanz-Lázaro C (2020) Monitoring polymer degradation under different conditions in the marine environment. Environ Pollut 259:113836. https://doi.org/10.1016/j.envpol.2019.113836

    Article  CAS  PubMed  Google Scholar 

  4. Pietrelli L, Poeta G, Battisti C, Sighicelli M (2017) Characterization of plastic beach debris finalized to its removal: a proposal for a recycling scheme. Environ Sci Pollut R 24(19):16536–16542. https://doi.org/10.1007/s11356-017-9440-4

    Article  CAS  Google Scholar 

  5. Tsang YY, Mak CW, Liebich C, Lam SW, Sze ETP, Chan KM (2017) Microplastic pollution in the marine waters and sediments of Hong Kong. Mar Pollut Bull 115(1–2):20–28. https://doi.org/10.1016/j.marpolbul.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  6. ter Halle A, Ladirat L, Martignac M, Mingotaud AF, Boyron O, Perez E (2017) To what extent are microplastics from the open ocean weathered? Environ Pollut 227:167–174. https://doi.org/10.1016/j.envpol.2017.04.051

    Article  CAS  PubMed  Google Scholar 

  7. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  8. Gan I, Chow WS (2018) Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: a review. Food Packag Shelf Life 17(February):150–161. https://doi.org/10.1016/j.fpsl.2018.06.012

    Article  Google Scholar 

  9. Imran M, Revol-Junelles AM, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro- to nanotechnology. Crit Rev Food Sci 50(9):799–821. https://doi.org/10.1080/10408398.2010.503694

    Article  CAS  Google Scholar 

  10. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112(September 2019):107086. https://doi.org/10.1016/j.foodcont.2020.107086

    Article  CAS  Google Scholar 

  11. Pilevar Z, Bahrami A, Beikzadeh S, Hosseini H, Jafari SM (2019) Migration of styrene monomer from polystyrene packaging materials into foods: characterization and safety evaluation. Trends Food Sci Tech 91(July):248–261. https://doi.org/10.1016/j.tifs.2019.07.020

    Article  CAS  Google Scholar 

  12. Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9(3):133

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  14. Ekinci A, Johnson AA, Gleadall A, Engstrøm DS, Han X (2020) Layer-dependent properties of material extruded biodegradable polylactic acid. J Mech Behav Biomed 104(October 2019):1–7. https://doi.org/10.1016/j.jmbbm.2020.103654

    Article  CAS  Google Scholar 

  15. Abu Hassan NA, Ahmad S, Chen RS, Shahdan D (2020) Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams. Constr Build Mater 240:117884. https://doi.org/10.1016/j.conbuildmat.2019.117884

    Article  CAS  Google Scholar 

  16. Zhang Q, Lei H, Cai H, Han X, Lin X, Qian M, Mateo W (2020) Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119898

    Article  PubMed  PubMed Central  Google Scholar 

  17. Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V, Bechelany M (2020) Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater Sci Eng C 110:110595. https://doi.org/10.1016/j.msec.2019.110595

    Article  CAS  Google Scholar 

  18. Babaei A, Abdolrasouli MH, Rostami A (2022) Polylactic acid/polycaprolactone bionanocomposites containing zinc oxide nanoparticles: structure, characterization and cytotoxicity assay. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057221118823

    Article  Google Scholar 

  19. Tajdari A, Babaei A, Goudarzi A, Partovi R, Rostami A (2021) Hybridization as an efficient strategy for enhancing the performance of polymer nanocomposites. Polym Compos 42(12):6801–6815. https://doi.org/10.1002/pc.26341

    Article  CAS  Google Scholar 

  20. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv 6(55):49747–49759. https://doi.org/10.1039/C6RA08345E

    Article  CAS  Google Scholar 

  21. Rostami A, Vahdati M, Alimoradi Y, Karimi M, Nazockdast H (2018) Rheology provides insight into flow induced nano-structural breakdown and its recovery effect on crystallization of single and hybrid carbon nanofiller filled poly(lactic acid). Polymer 134:143–154. https://doi.org/10.1016/j.polymer.2017.11.062

    Article  CAS  Google Scholar 

  22. González-López ME, Pérez-Fonseca AA, Cisneros-López EO, Manríquez-González R, Ramírez-Arreola DE, Rodriguez D, Robledo-Ortíz JR (2019) Effect of maleated PLA on the properties of rotomolded PLA-agave fiber biocomposites. J Polym Environ 27(1):61–73. https://doi.org/10.1007/s10924-018-1308-2

    Article  CAS  Google Scholar 

  23. Mazzanti V, Pariante R, Bonanno A, Ruiz de Ballesteros O, Mollica F, Filippone G (2019) Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos Sci Technol 180(March):51–59. https://doi.org/10.1016/j.compscitech.2019.05.015

    Article  CAS  Google Scholar 

  24. Csikós Á, Faludi G, Domján A, Renner K, Móczó J, Pukánszky B (2015) Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites. Eur Polym J 68:592–600. https://doi.org/10.1016/j.eurpolymj.2015.03.032

    Article  CAS  Google Scholar 

  25. Xia X, Shi X, Liu W, Zhao H, Li H, Zhang Y (2017) Effect of flax fiber content on polylactic acid (PLA) crystallization in PLA/flax fiber composites. Iran Polym J (English Edition) 26(9):693–702. https://doi.org/10.1007/s13726-017-0554-9

    Article  CAS  Google Scholar 

  26. Georgiopoulos P, Kontou E, Georgousis G (2018) Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos Commun 10(October 2017):6–10. https://doi.org/10.1016/j.coco.2018.05.002

    Article  Google Scholar 

  27. Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:1–9. https://doi.org/10.1155/2017/2178329

    Article  CAS  Google Scholar 

  28. Hasan KMF, Horváth PG, Kóczán Z, Alpár T (2021) Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-83140-0

    Article  CAS  Google Scholar 

  29. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/290/1/012031

    Article  Google Scholar 

  30. Bansal S, Ramachandran M, Raichurkar P (2016) Analysis of coir fiber reinforced poly-lactic acid (PLA) and poly-propylene (PP) polymeric composite. Appl Mech Mater 852:10–15. https://doi.org/10.4028/www.scientific.net/amm.852.10

    Article  Google Scholar 

  31. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A Appl Sci 63:76–84. https://doi.org/10.1016/j.compositesa.2014.04.003

    Article  CAS  Google Scholar 

  32. Nuthong W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Impact property of flexible epoxy treated natural fiber reinforced PLA composites. Energy Procedia 34:839–847. https://doi.org/10.1016/j.egypro.2013.06.820

    Article  CAS  Google Scholar 

  33. Gonzalez-Rodriguez V, Escobar-Barrios V, Peña-Juárez MG, Pérez E (2020) Effect of aliphatic chain in dicarboxylic acids on non-isothermal crystallization and mechanical behavior of titanium dioxide/iPP composites. Thermochim Acta 686(August 2019):178543. https://doi.org/10.1016/j.tca.2020.178543

    Article  CAS  Google Scholar 

  34. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19(10):1142–1144. https://doi.org/10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  35. Liu T, Mo Z, Zhang H (1998) Non-isothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci 67(5):815–821. https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5%3c815::AID-APP6%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  36. Wang J, Dou Q (2007) Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Phys 46(5):987–1001. https://doi.org/10.1080/00222340701457311

    Article  CAS  Google Scholar 

  37. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6(1):183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  38. Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E (2016) Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim Acta 631:8–17. https://doi.org/10.1016/j.tca.2016.03.007

    Article  CAS  Google Scholar 

  39. Metroke TL, Kachurina O, Knobbe ET (2002) Spectroscopic and corrosion resistance characterization of GLYMO–TEOS ormosil coatings for aluminum alloy corrosion inhibition. Prog Org Coat 44(4):295–305. https://doi.org/10.1016/S0300-9440(02)00063-2

    Article  CAS  Google Scholar 

  40. Zhou H, Su Y, Chen X, Yi S, Wan Y (2010) Modification of silicalite-1 by vinyltrimethoxysilane (VTMS) and preparation of silicalite-1 filled polydimethylsiloxane (PDMS) hybrid pervaporation membranes. Sep Purif Technol 75(3):286–294. https://doi.org/10.1016/j.seppur.2010.08.017

    Article  CAS  Google Scholar 

  41. Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Fu Q (2012) Realizing the enhancement of interfacial interaction in semi-crystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37(10):1425–1455. https://doi.org/10.1016/j.progpolymsci.2011.12.005

    Article  CAS  Google Scholar 

  42. Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27(8):461–467. https://doi.org/10.1016/j.tibtech.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  43. Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75(8):987–998. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  CAS  Google Scholar 

  44. Vieira FSLMG, dos Cesar Santos J, Panzera TH, Christoforo AL, Mano V, Rubio JCC, Scarpa F (2016) Hybrid composites based on sisal fibers and silica nanoparticles. Polym Compos 39(1):146–156. https://doi.org/10.1002/pc.23915

    Article  CAS  Google Scholar 

  45. Li J, He W, Long L, Zhang K, Xiang Y, Zhang M, Yu J (2018) A novel silica-based nucleating agent for polypropylene: Preparation, characterization, and application. J Vinyl Addit Technol 24(1):58–67. https://doi.org/10.1002/vnl.21525

    Article  CAS  Google Scholar 

  46. Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Lee SY (2016) Physiochemical, optical and mechanical properties of poly(lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Adv 6(12):9438–9445. https://doi.org/10.1039/c5ra26337a

    Article  CAS  Google Scholar 

  47. Hidalgo-Salazar MÁ, Correa-Aguirre JP, Montalvo-Navarrete JM, Lopez-Rodriguez DF (2018) Recycled polypropylene-coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. Thermosoftening plast

  48. Rosilo H, Kontturi E, Seitsonen J, Kolehmainen E, Ikkala O (2013) Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry. Biomacromolecules 14(5):1547–1554. https://doi.org/10.1021/bm400185z

    Article  CAS  PubMed  Google Scholar 

  49. Deetuam C, Samthong C, Choksriwichit S, Somwangthanaroj A (2020) Isothermal cold crystallization kinetics and properties of thermoformed poly (lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran Polym J 29:103–116

    Article  CAS  Google Scholar 

  50. Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413–414:442–446. https://doi.org/10.1016/j.msea.2005.08.167

    Article  CAS  Google Scholar 

  51. Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103(1):319–327. https://doi.org/10.1007/s10973-010-0961-z

    Article  CAS  Google Scholar 

  52. Mendoza G, Peña-Juárez MG, Perez E, Gonzalez-Calderon JA (2020) Used of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly(latic acid). J Mex Chem Soc 64(2):44–63. https://doi.org/10.29356/jmcs.v64i2.1126

    Article  CAS  Google Scholar 

  53. Yang J-n, Yu-xuan X, Nie S-b, Cheng G-j, Tao Y-l, Zhu J-b (2018) Morphological structure, impact toughness, thermal property and kinetic analysis on the cold crystallization of poly (lactic acid) bio-composites toughened by precipitated barium sulfate. Polym Degrad Stab 158:176–189. https://doi.org/10.1016/j.polymdegradstab.2018.11.008

    Article  CAS  Google Scholar 

  54. Naffakh M, Marco C, Ellis G (2015) Non-Isothermal cold-crystallization behavior and kinetics of poly(L-lactic acid)/WS2 inorganic nanotube nanocomposites. Polymers 7(11):2175–2189. https://doi.org/10.3390/polym7111507

    Article  CAS  Google Scholar 

  55. Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly(propylene suberate). Thermochim Acta 523(1–2):187–199. https://doi.org/10.1016/j.tca.2011.05.023

    Article  CAS  Google Scholar 

  56. Montes-Zavala I, Pérez-González MJ, Castrejón-González EO, Santamaría-Razo DA, Almendárez-Camarillo A, Pérez E, Gonzalez-Calderon JA (2021) Thermal and mechanical properties of poly(lactic acid) filled with modified silicon dioxide: importance of the surface area. Polym Bull 1:1–27. https://doi.org/10.1007/s00289-021-03571-7

    Article  CAS  Google Scholar 

  57. Feng Z, Guo J, Yan Y, Sun J, Zhang S, Wang W, Li H (2019) Modification of mesoporous silica with phosphotungstic acid and its effects on the combustion and thermal behavior of polylactic acid composites. Polym Degrad Stabil 160:24–34. https://doi.org/10.1016/j.polymdegradstab.2018.12.004

    Article  CAS  Google Scholar 

  58. Pal N, Banerjee S, Roy P, Pal K (2019) Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Mater Sci Eng C 104:109956. https://doi.org/10.1016/j.msec.2019.109956

    Article  CAS  Google Scholar 

  59. Luo W, Cheng L, Yuan C, Wu Z, Yuan G, Hou M, Li W (2019) Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Int J Biol Macromol 134:469–479. https://doi.org/10.1016/j.ijbiomac.2019.05.052

    Article  CAS  PubMed  Google Scholar 

  60. Picciochi R, Wang Y, Alves NM, Mano JF (2007) Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid Polym Sci 285(5):575–580. https://doi.org/10.1007/s00396-006-1590-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.A. Gonzalez-Calderon) expresses his gratitude to Consejo Nacional de Ciencia y Tecnología for the support of the Cátedras-CONACYT program. Also, the authors acknowledge Rodrigo Camarena Rangel and Rolando Villa Moreno for his invaluable support during the materials characterization.

Funding

The authors are grateful to Conacyt México for the financial support No. 265239 from the announcement “Fronteras de la Ciencia” through Project “Uso de dióxido de titanio funcionalizado con alcóxidos de silicio e imidazoles.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Escobar-Barrios or J. A. Gonzalez-Calderon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2696 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Angel-Monroy, M., Escobar-Barrios, V., Peña-Juarez, M.G. et al. Effect of coconut fibers chemically modified with alkoxysilanes on the crystallization, thermal, and dynamic mechanical properties of poly(lactic acid) composites. Polym. Bull. 81, 843–870 (2024). https://doi.org/10.1007/s00289-023-04740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04740-6

Keywords

Navigation