Skip to main content

Advertisement

Log in

Tailoring polycaprolactone/silk electrospun nanofiber yarns by varying compositional and processing parameters

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the last few years, micro/nanofibers of polycaprolactone/silk (PCL/S) blend have been investigated for biomaterial applications due to a valuable combination of biodegradability, biocompatibility, and bioactivity. However, in its most conventional conformation (i.e., mats), its use is limited by poor mechanical properties. One alternative to overcome such issue is the fabrication of nanofiber yarns (NF-Ys) which combines the inherent advantages of nanofibers with superior mechanical properties. Therefore, in this paper, we investigated the production of PCL/S NF-Y by electrospinning using a one step method, focusing on the effect of compositional and processing parameters, such as silk content (0–70%), flow rate, and rotatory collector speed on nanofibers morphology, tensile properties, and processability. SEM analyses and tensile tests showed that by adjusting such parameters, it is possible to change morphology and strength of the yarns. For instance, by decreasing rotary collector speed in the production of PCL/S 70:30 NF-Y, strength increased from 7.01 ± 1.10 to 12.71 ± 1.33 MPa. In this context, NF-Ys can be designed to fulfill specific demands by varying electrospinning and compositional parameters, making it possible to produce different structures with tailorable properties, for many applications, including biotextiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laiva AL, Venugopal JR, Karuppuswamy P, Navaneethan B, Gora A, Ramakrishna S (2015) Controlled release of titanocene into the hybrid nanofibrous scaffolds to prevent the proliferation of breast cancer cells. Int J Pharm 483:115

    CAS  PubMed  Google Scholar 

  2. Karuppuswamy P, Venugopal JR, Navaneethan B, Laiva AL, Sridhar S, Ramakrishna S (2014) Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Appl Surf Sci 322:62

    Google Scholar 

  3. Li L, Li H, Qian Y, Li X, Singh GK, Zhong L (2011) Electrospun poly (ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49:223

    CAS  PubMed  Google Scholar 

  4. Steffi C, Wang D, Kong CH, Wang Z, Lim PN, Shi Z (2018) Estradiol-loaded poly(ϵ-caprolactone)/silk fibroin electrospun microfibers decrease osteoclast activity and retain osteoblast function. ACS Appl Mater Interfaces 10:9988

    CAS  PubMed  Google Scholar 

  5. Lv J, Chen L, Zhu Y, Hou L, Liu Y (2014) Promoting epithelium regeneration for esophageal tissue engineering through basement membrane reconstitution. ACS Appl Mater Interfaces 6:4954

    CAS  PubMed  Google Scholar 

  6. Nazeer MA, Yilgor E, Yilgor I (2019) Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer 168:86

    CAS  Google Scholar 

  7. Chen CH, Chen SH, Kuo CY, Li ML, Chen JP (2017) Response of dermal fibroblasts to biochemical and physical cues in aligned polycaprolactone/silk fibroin nanofiber scaffolds for application in tendon tissue engineering. Nanomaterials 7:219

    PubMed  PubMed Central  Google Scholar 

  8. Wang L, Wu Y, Hu T, Ma PX, Guo B (2019) Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater 96:175

    CAS  PubMed  Google Scholar 

  9. Yuan H, Shi H, Qiu X, Chen Y (2016) Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers. J Biomater Sci Polym Ed 27:263

    CAS  PubMed  Google Scholar 

  10. Jin D, Hu J, Xia D, Liu A, Kuang H, Du J, Mo X, Yin M (2019) Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Int J Nanomed 14:4261

    CAS  Google Scholar 

  11. Zhou Y, Wang H, He J, Qi K, Ding B, Cui S (2018) Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting. J Mater Sci 53(22):15735

    CAS  Google Scholar 

  12. Levitt AS, Knittel CE, Vallett R, Koerner M, Dion G, Schauer CL (2017) Investigation of nanoyarn preparation by modified electrospinning setup. J Appl Polym Sci 44813:1

    Google Scholar 

  13. Levitt AS, Vallett R, Dion G, Schauer CL (2018) Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J Appl Polym Sci 46404:1

    Google Scholar 

  14. Sun B, Li J, Liu W, Aqeel BM, El-Hamshary H, Al-Deyab SS, Mo X (2015) Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iran Polym J 24(1):29

    CAS  Google Scholar 

  15. Zhang K, Cao N, Guo X, Zou Q, Zhou S, Yang R, Zhao W, Mo X, Liu W, Fu Q (2018) The fabrication of 3D surface scaffold of collagen/poly (L-lactide-co-caprolactone) with dynamic liquid system and its application in urinary incontinence treatment as a tissue engineered sub-urethral sling: in vitro and in vivo study. Neurourol Urodyn 37(3):978

    PubMed  Google Scholar 

  16. Wu J, Liu S, He L, Wang H, He C, Fan C, Mo X (2012) Electrospun nanoyarn scaffold and its application in tissue engineering. Mater Lett 89:146

    CAS  Google Scholar 

  17. Zhang K, Guo X, Li Y, Fu Q, Mo X, Nelson K, Zhao W (2016) Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: an in vitro study. Colloids Surf B Biointerfaces 144:21–32

    CAS  PubMed  Google Scholar 

  18. Wu S, Wang YS, Streubel PN, Duan B (2017) Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater 62:102

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aghaei-Ghareh-Bolagh B, Mithieux SM, Hiob MA, Wang Y, Chong A, Weiss AS (2019) Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. Acta Biomater 91:112

    CAS  PubMed  Google Scholar 

  20. Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X (2018) Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C 82:121

    CAS  Google Scholar 

  21. Luo J, Zhang H, Zhu J, CuiNGao XJ, Wang X, Jiong NX (2018) 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B Biointerfaces 163:369–378

    CAS  PubMed  Google Scholar 

  22. Zhou J, Cao C, Ma X, Lin J (2010) Electrospinning of silk fibroin and collagen for vascular tissue engineering. Int J Biol Macromol 47(4):514

    CAS  PubMed  Google Scholar 

  23. Wang F, Yu H, Yang ZG, Si L, Liu Q, Hu X (2017) Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films. J Therm Anal Calorim 130(2):851

    CAS  Google Scholar 

  24. Chuang CC, Prasannan A, Hong P, Chiang MY (2018) Silk-sericin degummed wastewater solution-derived and nitrogen enriched porous carbon nanosheets for robust biological imaging of stem cells. Int J Biol Macromol 107:2122

    CAS  PubMed  Google Scholar 

  25. Hu X, Kaplan D, Cebe P (2008) Dynamic protein-water relationships during β-sheet formation. Macromolecules 41(11):3939

    CAS  Google Scholar 

  26. He Z, Zhao T, Zhou X, Liu Z, Huang H (2017) Sequential order of the secondary structure transitions of proteins under external perturbations: regenerated silk fibroin under thermal treatment. Anal Chem 89(10):5534

    CAS  PubMed  Google Scholar 

  27. Wang X, Zhao H, Turng L, Li SQ (2013) Crystalline morphology of electrospun poly(ε-caprolactone) (PCL) nanofibers. Ind Eng Chem Res 52(13):4939

    CAS  Google Scholar 

  28. Kameda T, Tsukada M (2006) Structure and thermal analyses of MAA-grafted silk fiber using DSC and 13C solid-state NMR. Macromol Mater Eng 291(7):877. https://doi.org/10.1002/mame.200600081

    Article  CAS  Google Scholar 

  29. Hu X, Wang X, Rnjak J, Weiss AS, Kaplan DL (2010) Biomaterials derived from silk-tropoelastin protein systems. Biomaterials 31(32):8121

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Chick CS (2013) Beating the heat-fast scanning melts silk beta sheet crystals. Sci Rep 3:1. https://doi.org/10.1038/srep01130

    Article  CAS  Google Scholar 

  31. Qiao X, Li W, Sun K, Xu S, Chen X (2009) Nonisothermal crystallization behaviors of silk-fibroin-fiber-reinforced poly(e-caprolactone) biocomposites. J Appl Polym Sci 111:2908

    CAS  Google Scholar 

  32. Gil-Castell O, Badia JD, Ribes-Greus A (2018) Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. Eur Polym J 107:273

    Google Scholar 

  33. Gil-Castell O, Badia JD, Ontoria-Oviedo I, Castellano D, Sepúlveda P, Ribes-Greus A (2020) Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation. Mat Sci Eng C 107:110296

    CAS  Google Scholar 

  34. Agrawal P, Pramanik K, Bissoyi A (2018) Novel Blowspun nanobioactive glass doped polycaprolactone/silk fibroin composite nanofibrous scaffold with enhanced osteogenic property for bone tissue engineering. Fibers polym 19(12):2465

    CAS  Google Scholar 

  35. Yin A, Li J, Bowlin GL, Li D, Rodriguez IA, Wang J, Wu T, El-Hamshary HA, Al-Deyab SS, Mo X (2014) Fabrication of cell penetration enhanced poly (l-lactic acid-co-e-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids Surf B Biointerfaces 120:47

    CAS  PubMed  Google Scholar 

  36. Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29(3):663

    CAS  Google Scholar 

  37. Park JY, Lee IH, Bea GN (2008) Optimization of the electrospinning conditions for preparation of nanofibers from inylacetate (PVAc) in ethanol solvent. J Ind Eng Chem 14(6):707

    CAS  Google Scholar 

  38. Anaraki NA, Rad LR, Iran M, Haririan I (2014) Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 132:41286

    Google Scholar 

  39. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6):2017. https://doi.org/10.1016/j.polymer.2004.01.024

    Article  CAS  Google Scholar 

  40. Fallahi D, Rafizadeh M, Mohammadi N, Vahidi B (2010) Effect of applied voltage on surface and volume charge density of the jet in electrospinning of polyacrylonitrile solutions. Polym Eng Sci 50:1372

    CAS  Google Scholar 

  41. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrost 71(3):189. https://doi.org/10.1016/j.elstat.2012.12.018

    Article  CAS  Google Scholar 

  42. Wong SC, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer 49(21):4713

    CAS  Google Scholar 

  43. Steyaert I, Delplancke MP, Van Assche G, Rahier H, De Clerck K (2013) Fast-scanning calorimetry of electrospun polyamide nanofibres: Melting behaviour and crystal structure. Polymer 54(25):6809

    CAS  Google Scholar 

  44. Hajiani F, Jeddi A, Gharehaghaji A (2012) An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength. Fibers Polym 13(2):244

    CAS  Google Scholar 

  45. Hajiani F, Ghareaghaji AA, Jeddi A, Amirshahi SH, Mazaheri F (2014) Wicking properties of polyamide 66 twisted nanofiber yarn by tracing the color alteration in yarn structure. Fibers Polym 15:1966

    CAS  Google Scholar 

  46. He J, Qi K, Zhou Y, Cui S (2014) Multiple conjugate electrospinning method for the preparation of continuous polyacrylonitrile nanofiber yarn. J Appl Polym Sci 131(8):2

    Google Scholar 

  47. Jin S, Xin B, Zheng Y (2017) Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method. Text Res J 89(1):52

    Google Scholar 

  48. Jin S, Xin B, Zheng Y, Liu S (2018) Effect of electric field on the directly electrospun nanofiber yarns: simulation and experimental study. Fibers Polym 19(1):116

    CAS  Google Scholar 

Download references

Funding

This research was supported by Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG); Capes; and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Oréfice.

Ethics declarations

Conflict of interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotrim, M., Oréfice, R. Tailoring polycaprolactone/silk electrospun nanofiber yarns by varying compositional and processing parameters. Polym. Bull. 81, 593–610 (2024). https://doi.org/10.1007/s00289-023-04735-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04735-3

Keywords

Navigation