Skip to main content
Log in

Synthesis of sandwiched chitosan-g-PMMA nanocomposite by layered double hydroxides for packaging applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) incorporated layered double hydroxides (LDH) reinforced chitosan grafted polymethyl methacrylate nanocomposites (CHs-g-PMMA/Ag/LDH) are prepared by the surfactant-free emulsion polymerization process. The laminar sandwiched structure of CHs-g-PMMA is obtained by the exfoliation of LDH platelets and AgNPs embedded in the composite resembles the plums in pudding. TG analysis establishes the high processibility of the material due to the presence of LDH and silver nanoparticles. The incorporation of AgNPs and LDH platelets improves the thermal stability appreciably, and it is further enhanced with the increase in LDH content. Mechanical attributes such as tensile strength, compressive strength, Young’s modulus and elongation at break are increased monotonically by the addition of AgNPs as well as increasing concentration of LDH. The exfoliation of LDH platelets within the CHs-g-PMMA/Ag improves the mechanical strength significantly. The uniform distribution of LDH creates a tortuous path which hinders gas permeation by which the barrier property of the nanocomposite is improved by sevenfold as compared to the copolymeric matrix. Biodegradability and chemical resistance are improved by the combined effect of AgNPs and LDH. Limiting oxygen index (LOI) values are raised due to the laminar structure of LDH which justifies the composite as fire-retardant material. The antibacterial behavior of the materials is analyzed by zone inhibition technique using S. aureus and E. coli as test organisms. The materials exhibited improvement in antibacterial behavior as a result of introduction of AgNPs and LDH with more pronounced effect on gram-negative bacterial strains. These as-synthesized, chemically inert and thermally stable materials possessing higher barrier and antibacterial properties can be considered as a smart material for potential packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17(1):165–199. https://doi.org/10.1111/1541-4337.12322

    Article  PubMed  Google Scholar 

  2. Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 112:532–546

    Article  CAS  Google Scholar 

  3. Sahoo G, Sarkar N, Swain SK (2019) Effect of layered graphene oxide on the structure and properties of bovine serum albumin grafted polyacrylonitrile hybrid bionanocomposites. Polym Compos 40(10):3989–4003. https://doi.org/10.1002/pc.25260

    Article  CAS  Google Scholar 

  4. He Y, Huang H, Li D, Shi C, Wu SJ (2018) Quality and operations management in food supply chains: a literature review. J Food Qual. https://doi.org/10.1155/2018/7279491

    Article  Google Scholar 

  5. Quero F, Padilla C, Campos V, Luengo J, Caballero L, Melo F, Li Q, Eichhorn SJ, Enrione J (2018) Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films. Carbohydr Polym 195:89–98. https://doi.org/10.1016/j.carbpol.2018.04.059

    Article  CAS  PubMed  Google Scholar 

  6. Abdul Khalil HP, Tye YY, Leh CP, Saurabh CK, Ariffin F, Mohammad Fizree H, Mohamed A, Suriani AB (2018) Cellulose reinforced biodegradable polymer composite film for packaging applications. InBionanocomposites for packaging applications, Springer, Cham, pp 49–69

    Google Scholar 

  7. Sethy PK, Prusty K, Mohapatra P, Swain SK (2020) Nano-CaCO 3 -embodied polyacrylicacid/dextran nanocomposites for packaging applications. J Appl Polym Sci 137(3):48298. https://doi.org/10.1002/app.48298

    Article  CAS  Google Scholar 

  8. Silvestre J, Delattre C, Michaud P, de Baynast H (2021) Optimization of Chitosan properties with the aim of a water resistant adhesive development. Polymers 13(22):4031. https://doi.org/10.3390/polym13224031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15(2):205–221. https://doi.org/10.1007/s10311-017-0613-7

    Article  CAS  Google Scholar 

  10. Piergiovanni L, Limbo S (2016) Plastic packaging materials. Food packaging materials. Springer, Cham, pp 33–49

    Chapter  Google Scholar 

  11. Bafna M, Gupta AK, Khanna RK, Vijay YK (2020) Development of potassium permanganate (KMnO4) doped poly methyl methacrylate (PMMA) composite using layered structure for electromagnetic shielding purpose. Mater Today: Proc 30:11–16. https://doi.org/10.1016/j.matpr.2020.03.736

    Article  CAS  Google Scholar 

  12. Kowalonek J, Kaczmarek H, Kurzawa M (2016) Effect of UV-irradiation on fluorescence of poly (methyl methacrylate) films with photosensitive organic compounds. J Photochem Photobiol A: Chem 319:18–24. https://doi.org/10.1016/j.jphotochem.2015.12.017

    Article  CAS  Google Scholar 

  13. Mahant YP, Kondawar SB, Bhute M, Nandanwar DV (2015) Electrospun poly (vinylidene fluoride)/poly (methyl methacrylate) composite nanofibers polymer electrolyte for batteries. Procedia Mater Sci 10:595–602. https://doi.org/10.1016/j.mspro.2015.06.011

    Article  CAS  Google Scholar 

  14. Oh H, Kim J (2019) Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Compos Sci Technol 172:153–162. https://doi.org/10.1016/j.compscitech.2019.01.021

    Article  CAS  Google Scholar 

  15. Zhang C, Li A, Zhao YH, Bai SL, Zhang YF (2018) Thermal, electrical and mechanical properties of graphene foam filled poly (methyl methacrylate) composite prepared by in situ polymerization. Compos B Eng 135:201–206. https://doi.org/10.1016/j.compositesb.2017.10.026

    Article  CAS  Google Scholar 

  16. Tihan TG, Ionita MD, Popescu RG, Iordachescu D (2009) Effect of hydrophilic–hydrophobic balance on biocompatibility of poly (methyl methacrylate)(PMMA)–hydroxyapatite (HA) composites. Mater Chem Phys 118(2–3):265–269. https://doi.org/10.1016/j.matchemphys.2009.03.019

    Article  CAS  Google Scholar 

  17. Sethy PK, Biswal A, Mohapatra P, Swain SK (2022) Nano BN reinforced cellulose-based tripolymeric hybrid nanocomposites as packaging materials. Polym Plast Technol Mater 61(11):1233–1243. https://doi.org/10.1080/25740881.2022.2044048

    Article  CAS  Google Scholar 

  18. Ni X, Cheng W, Huan S, Wang D, Han G (2019) Electrospun cellulose nanocrystals/poly (methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties. Carbohydr Polym 206:29–37. https://doi.org/10.1016/j.carbpol.2018.10.103

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Liang T, Zhang B, Bai H, Ma P, Dong W (2018) Green functionalization of cellulose nanocrystals for application in reinforced poly (methyl methacrylate) nanocomposites. Carbohydr Polym 202:591–599. https://doi.org/10.1016/j.carbpol.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  20. Tabatabaei RH, Jafari SM, Mirzaei H, Nafchi AM, Dehnad D (2018) Preparation and characterization of nano-SiO2 reinforced gelatin-k-carrageenan biocomposites. Int J Biol Macromol 111:1091–1099. https://doi.org/10.1016/j.ijbiomac.2018.01.116

    Article  CAS  Google Scholar 

  21. Rezaei M, Farhadian M, Rashidi AM, Saeidipour M, Manshaei M, Rezaee M (2018) Nano-biphasic calcium phosphate ceramic for the repair of bone defects. J Craniofac Surg 29(6):e543–e548. https://doi.org/10.1097/SCS.0000000000004514

    Article  PubMed  Google Scholar 

  22. Sahoo G, Sarkar N, Sahu D, Swain SK (2017) Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications. RSC Adv 7(4):2137–2150. https://doi.org/10.1039/C6RA26930C

    Article  CAS  Google Scholar 

  23. Yang W, Wang XL, Li J, Yan X, Ge S, Tadakamalla S, Guo Z (2018) Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methyl acrylate-glycidyl methacrylate ternary blends. Polym Eng Sci 58(7):1127–1134. https://doi.org/10.1002/pen.24675

    Article  CAS  Google Scholar 

  24. Mostafa U, Rahman MJ, Mieno T, Bhuiyan MA (2020) Carbon nanotube-incorporated cellulose nanocomposite sheet for flexible technology. Bull Mater Sci 43(1):1. https://doi.org/10.1007/s12034-020-02145-z

    Article  CAS  Google Scholar 

  25. Prusty K, Swain SK (2020) Nano ZrO 2 reinforced cellulose incorporated polyethylmethacrylate/polyvinyl alcohol composite films as semiconducting packaging materials. J Appl Polym Sci 137(42):49284. https://doi.org/10.1002/app.49284

    Article  CAS  Google Scholar 

  26. Sethy PK, Prusty K, Mohapatra P, Swain SK (2019) Nanoclay decorated polyacrylic acid/starch hybrid nanocomposite thin films as packaging materials. Polym Compos 40(1):229–239. https://doi.org/10.1002/pc.24636

    Article  CAS  Google Scholar 

  27. Swain SK, Patra SK, Kisku SK (2014) Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polym compos 35(7):1238–1243. https://doi.org/10.1002/pc.22773

    Article  CAS  Google Scholar 

  28. Swain SK, Barik S, Pradhan GC, Behera L (2018) Delamination of Mg-Al layered double hydroxide on starch: change in structural and thermal properties. Polym Plast Technol Eng 57(15):1585–1591. https://doi.org/10.1080/03602559.2017.1410844

    Article  CAS  Google Scholar 

  29. Chubar N, Gilmour R, Gerda V, Mičušík M, Omastova M, Heister K, Man P, Fraissard J, Zaitsev V (2017) Layered double hydroxides as the next generation inorganic anion exchangers: synthetic methods versus applicability. Adv Colloid Interface Sci 245:62–80. https://doi.org/10.1016/j.cis.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  30. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95. https://doi.org/10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  31. Rajaei M, Kim NK, Bickerton S, Bhattacharyya D (2019) A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Compos B: Eng 165:65–74. https://doi.org/10.1016/j.compositesb.2018.11.089

    Article  CAS  Google Scholar 

  32. Wang X, Guo W, Cai W, Wang J, Song L, Hu Y (2020) Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Appl Mater Today 20:100762. https://doi.org/10.1016/j.apmt.2020.100762

    Article  Google Scholar 

  33. Dou Y, Xu S, Liu X, Han J, Yan H, Wei M, Evans DG, Duan X (2014) Transparent, flexible films based on layered double hydroxide/cellulose acetate with excellent oxygen barrier property. Adv Funct Mater 24(4):514–521. https://doi.org/10.1002/adfm.201301775

    Article  CAS  Google Scholar 

  34. Dou Y, Zhou A, Pan T, Han J, Wei M, Evans DG, Duan X (2014) Humidity-triggered self-healing films with excellent oxygen barrier performance. ChemComm 50(54):7136–7138. https://doi.org/10.1039/C4CC01970A

    Article  CAS  Google Scholar 

  35. Carrero A, van Grieken R, Suarez I, Paredes B (2012) Development of a new synthetic method based on in situ strategies for polyethylene/clay composites. J Appl Polym Sci 126(3):987–997. https://doi.org/10.1002/app.36830

    Article  CAS  Google Scholar 

  36. Prado BR, Bartoli JR (2018) Synthesis and characterization of PMMA and organic modified montmorilonites nanocomposites via in situ polymerization assisted by sonication. Appl Clay Sci 160:132–143. https://doi.org/10.1016/j.clay.2018.02.035

    Article  CAS  Google Scholar 

  37. Ozkose UU, Altinkok C, Yilmaz O, Alpturk O, Tasdelen MA (2017) In-situ preparation of poly (2-ethyl-2- oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur Polym J 88:586–593. https://doi.org/10.1016/j.eurpolymj.2016.07.004

    Article  CAS  Google Scholar 

  38. Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6(1):1–2. https://doi.org/10.1038/srep20470

    Article  CAS  Google Scholar 

  39. Federle TW, Barlaz MA, Pettigrew CA, Kerr KM, Kemper JJ, Nuck BA, Schechtman LA (2002) Anaerobic biodegradation of aliphatic polyesters: poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) and poly (ε-caprolactone). Biomacromol 3(4):813–822. https://doi.org/10.1021/bm025520w

    Article  CAS  Google Scholar 

  40. Bhavitha KB, Nair AK, Mariya H, Jose J, Mayeen A, Kala MS, Saha A, Thomas S, Oluwafemi OS, Kalarikkal N (2018) In situ dose dependent gamma ray irradiated synthesis of PMMA–Ag nanocomposite films for multifunctional applications. New J Chem 42(19):15750–15761. https://doi.org/10.1039/C8NJ02684J

    Article  CAS  Google Scholar 

  41. Barik S, Badamali SK, Behera L, Jena PK (2018) Mg–Al LDH reinforced PMMA nanocomposites: a potential material for packaging industry. Compos Interfaces 25(4):369–380. https://doi.org/10.1080/09276440.2018.1439628

    Article  CAS  Google Scholar 

  42. Wen SH, Liang RP, Zhang L, Qiu JD (2018) Multimodal assay of arsenite contamination in environmental samples with improved sensitivity through stimuli-response of multiligands modified silver nanoparticles. ACS Sustain Chem Eng 6(5):6223–6232. https://doi.org/10.1021/acssuschemeng.7b04934

    Article  CAS  Google Scholar 

  43. Radhakumary C, Nair PD, Mathew S, Nair CR (2005) Biopolymer composite of chitosan and methyl methacrylate for medical applications. Trends Biomater Artif Organs 18(2):117–124

    Google Scholar 

  44. Amer ZJ, Ahmed JK, Abbas SF (2014) Chitosan/PMMA bioblend for drug release applications. Int J Eng and Tech 4(5):1–6

    Google Scholar 

  45. Kaur R, Goyal D, Agnihotri S (2021) Chitosan/PVA silver nanocomposite for butachlor removal: fabrication, characterization, adsorption mechanism and isotherms. Carbohyd Polym 262:117906

    Article  CAS  Google Scholar 

  46. Nazrul S, Behera L, Singh RK, Biswal A, Swain SK (2022) Combined effect of layered double hydroxides and nano silver on bacterial inhibition and gas barrier properties of chitosan grafted polyacrylonitrile nanocomposites. Polym-Plast Technol Mater 61(18):1959–1972

    CAS  Google Scholar 

  47. Dey SC, Al-Amin M, Rashid TU, Sultan MZ, Ashaduzzaman M, Sarker M, Shamsuddin SM (2016) Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. Int J latest Res Eng Technol 2(2):52–62

    Google Scholar 

  48. Banerjee A, Ray SK (2021) Synthesis of chitosan grafted polymethyl methacrylate nanopolymers and its effect on polyvinyl chloride membrane for acetone recovery by pervaporation. Carbohydr Polym 258:117704. https://doi.org/10.1016/j.carbpol.2021.117704

    Article  CAS  PubMed  Google Scholar 

  49. Aziz SB, Abdullah OG, Brza MA, Azawy AK, Tahir DA (2019) Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys. 15:102776. https://doi.org/10.1016/j.rinp.2019.102776

    Article  Google Scholar 

  50. Pradhan AK, Sahoo PK (2017) Synthesis and study of thermal, mechanical and biodegradation properties of chitosan-g-PMMA with chicken egg shell (nano-CaO) as a novel bio-filler. Mater Sci Eng C 80:149–155. https://doi.org/10.1016/j.msec.2017.04.076

    Article  CAS  Google Scholar 

  51. Xu J, Han X, Liu H, Hu Y (2006) Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloids Surf, A 273(1–3):179–183. https://doi.org/10.1016/j.colsurfa.2005.08.019

    Article  CAS  Google Scholar 

  52. Sethy PK, Mohapatra P, Patra S, Bharatiya D, Swain SK (2021) Antimicrobial and barrier properties of polyacrylic acid/GO hybrid nanocomposites for packaging application. Nano-Struct. Nano-Objects 26:100747. https://doi.org/10.1016/j.nanoso.2021.100747

    Article  CAS  Google Scholar 

  53. Tongnuanchan P, Benjakul S, Prodpran T (2012) Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food chem 134(3):1571–1579. https://doi.org/10.1016/j.foodchem.2012.03.094

    Article  CAS  PubMed  Google Scholar 

  54. An J, Yuan X, Luo Q, Wang D (2010) Preparation of chitosan-graft-(methyl methacrylate)/Ag nanocomposite with antimicrobial activity. Polym Int 59(1):62–70. https://doi.org/10.1002/pi.2689

    Article  CAS  Google Scholar 

  55. Pradhan AK, Swain SK (2012) Oxygen barrier of multiwalled carbon nanotube/polymethyl methacrylate nanocomposites prepared by in situ method. J Mater Sci 28(5):391–395. https://doi.org/10.1016/S1005-0302(12)60073-5

    Article  CAS  Google Scholar 

  56. Qian Y, Qiao P, Li L, Han H, Zhang H, Chang G (2020) Hydrothermal synthesis of lanthanum-doped MgAl-layered double hydroxide/graphene oxide hybrid and its application as flame retardant for thermoplastic polyurethane. Adv Polym 2020:1–10. https://doi.org/10.1155/2020/1018093

    Article  CAS  Google Scholar 

  57. Huang G, Chen S, Song P, Lu P, Wu C, Liang H (2014) Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly (methyl methacrylate) nanocomposites. Appl Clay Sci 88:78–85. https://doi.org/10.1016/j.clay.2013.11.002

    Article  CAS  Google Scholar 

  58. Zhang Z, Qin J, Zhang W, Pan YT, Wang DY, Yang R (2020) Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem Eng J 381:122777. https://doi.org/10.1016/j.cej.2019.122777

    Article  CAS  Google Scholar 

  59. Li L, Qian Y, Qiao P, Han H, Zhang H (2019) Preparation of LDHs based on bittern and its flame retardant properties in EVA/LDHs composites. Adv Polym Technol. https://doi.org/10.1155/2019/4682164

    Article  Google Scholar 

  60. Gupta V, Datta P (2019) Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J Med Res 149(2):97. https://doi.org/10.4103/ijmr.IJMR_755_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Larson E, Merkens W (2017) Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000290

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat K. Swain.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazrul, S., Biswal, A., Behera, L. et al. Synthesis of sandwiched chitosan-g-PMMA nanocomposite by layered double hydroxides for packaging applications. Polym. Bull. 81, 633–660 (2024). https://doi.org/10.1007/s00289-023-04732-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04732-6

Keywords

Navigation