Skip to main content

Advertisement

Log in

Transforming vulcanized styrene–butadiene waste into valuable raw material: an opportunity for high-impact polypropylene production

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polypropylene (PP) compounds with styrene–butadiene rubber residue (SBRr) from the footwear industry were produced, adding styrene-(ethylene–butylene)-styrene (SEBS) as a compatibilizer, with 20% and 30% of styrene (St.). The PP/SBRr and PP/SBRr/SEBS compounds were processed in a co-rotating twin-screw extruder and injection molded. The addition of 30% SBRr did not compromise processability, as torque and melt flow index increased slightly compared to neat PP. Significant increases in impact strength were achieved for PP/SBRr/SEBS (10–20% St.) and PP/SBRr/SEBS (10–30% St.), with gains of 316% and 248% related to PP. The elastic modulus, tensile strength, elongation at break, and Shore D hardness indicated greater flexibility for the PP/SBRr/SEBS, especially in the copolymer with 20% St. When the PP/SBRr system was made compatible with SEBS (30% St.), the elastic modulus, tensile strength, and Shore D hardness increased in relation to the PP/SBRr/SEBS (20% St.). Such behavior suggested that the SEBS copolymer (30% St.) was more effective in increasing the resistance to elastic deformation of the PP/SBRr/SEBS compounds, compared to SEBS (20% St.). The heat deflection temperature (HDT) indicated that even adding high content of SBRr to PP, the HDT was not severely affected, possibly due to its crosslinked character. PP/SBRr compatibilization with SEBS (20% St.) inhibited the PP crystalline peaks, as verified through X-ray diffraction (XRD). Stable morphology was achieved upon 10% of SEBS addition to PP/SBRr, providing proper interfacial adhesion and fine particles, contributing to toughening PP. Acquired results are promising for rubber recycling, aiming to produce high-impact polypropylene for containers and furniture accessories applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Jiang J, Shi K, Zhang X, Yu K, Zhang H, He J, Ju Y, Liu J (2022) From plastic waste to wealth using chemical recycling: a review. J Environ Chem Eng 10(1):106867. https://doi.org/10.1016/j.jece.2021.106867

    Article  CAS  Google Scholar 

  2. Stallkamp C, Steins J, Ruck M, Volk R, Schultmann F (2022) Designing a recycling network for the circular economy of plastics with different multi-criteria optimization approaches. Sustainability 14(17):10913. https://doi.org/10.3390/su141710913

    Article  Google Scholar 

  3. Neves RM, Kerche EF, Zattera AJ, Amico SC (2022) Hybridization effect of functionalized microcrystalline cellulose and liquid acrylonitrile butadiene rubber on epoxy. J Compos Mater 56(18):2867–2877. https://doi.org/10.1177/00219983221107096

    Article  CAS  Google Scholar 

  4. Wisniewska P, Wang S, Formela K (2022) Waste tire rubber devulcanization technologies: state-of-the-art, limitations and future perspectives. Waste Manage 150(9):174–184. https://doi.org/10.1016/j.wasman.2022.07.002

    Article  CAS  Google Scholar 

  5. Zedler L, Wang S, Formela K (2022) Ground tire rubber functionalization as a promising approach for the production of sustainable adsorbents of environmental pollutants. Sci Total Environ 836(9):155636. https://doi.org/10.1016/j.scitotenv.2022.155636

    Article  CAS  PubMed  Google Scholar 

  6. Saeb MR, Wisniewska P, Susik A, Zedler L, Vahabi H, Colom X, Canavate J, Tercjak A, Formela K (2022) GTR/thermoplastics blends: How do interfacial interactions govern processing and physico-mechanical properties? Materials 15(3):841. https://doi.org/10.3390/ma15030841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luna CBB, Silva DF, Araújo EM (2014) Análise do comportamento termomecânico, térmico e mecânico de blendas de PA6/resíduos de borracha. Revista de Engenharia e Tecnologia 6(1):160–169

    Google Scholar 

  8. FORMELA, K. (2021) Sustainable development of waste tires recycling technologies—recent advances, challenges and future trends. Adv Ind Eng Polym Res 4(3):209–222. https://doi.org/10.1016/j.aiepr.2021.06.004

    Article  Google Scholar 

  9. Kerche EF, Schneider EL, Grassi GD, Robinson LC, Furlanetto A, Luz SM (2022) Manufacturing and characterization of recycled SBR-based composites for surfboard decks. J Rubber Res 25:375–382. https://doi.org/10.1007/s42464-022-00172-5

    Article  CAS  Google Scholar 

  10. Stoger LS, Varga C (2021) PE-contaminated industrial waste ground tire rubber: how to transform a handicapped resource to a valuable one. Waste Manage 119(1):111–121. https://doi.org/10.1016/j.wasman.2020.09.037

    Article  CAS  Google Scholar 

  11. Macsiniuc A, Rochette A, Brisson J, Rodrigue D (2014) Polystyrene/recycled sbr powder compounds produced in an internal batch mixer. Prog Rubber Plast Recycl Technol 30(4):185–210. https://doi.org/10.1177/147776061403000401

    Article  Google Scholar 

  12. Pereira CA, Azevedo JB, Almeida TG, Canedo EL (2018) Estudo do processamento de compósitos de polipropileno/pó de madeira em extrusora de dupla rosca corrotaciona. Revista Eletrônica de Materiais e Processos 13(1):23–36

    Google Scholar 

  13. Alves AM, Cavalcanti SN, Arimatéia RR, Agrawal P, Freitas NL, Mélo TJA (2016) Influência do processamento e da alumina sintetizada em laboratório nas propriedades do polipropileno. Revista Eletrônica de Materiais e Processos 11(3):155–163

    Google Scholar 

  14. Souto CMRA, Rabello MS (2019) Espumas Injetadas de Polipropileno: Efeitos do Teor do Agente de Expansão e dos Parâmetros de Processamento. Revista Eletrônica de Mater Processos 14(3):119–129

    Google Scholar 

  15. Luna CBB, Ferreira ESB, Silva LJMD, Silva WA, Araújo EM, Melo JBCA (2019) Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers. Mater Res Exp 6(12):125319. https://doi.org/10.1088/2053-1591/ab56b2

    Article  CAS  Google Scholar 

  16. Egodage SM, Harper JF, Walpalage S (2009) Ground tyre rubber/waste polypropylene blends—effect of composition on mechanical properties. Prog Rubber Plast Recycl Technol 25(4):213–231. https://doi.org/10.1177/147776060902500402

    Article  CAS  Google Scholar 

  17. Costa HM, Ramos VD, Silva WS, Sirqueira AS (2012) Otimização de Propriedades Mecânicas de Misturas Ternárias de Polipropileno (PP)/Borracha de Etileno-Propileno-Dieno (EPDM)/Pó de Pneus (SRT) sob Tração e Impacto usando a Metodologia da Superfície de Resposta (MSR). Polímeros 22(1):27–33. https://doi.org/10.1590/S0104-14282012005000009

    Article  Google Scholar 

  18. Ciro E, Parra J, Zapata M, Murillo EA (2015) Effect of the recycled rubber on the properties of recycled rubber/recycled polypropylene blends. Ingeniería y Ciencia 11(22):173–188. https://doi.org/10.17230/ingciencia.11.22.8

    Article  CAS  Google Scholar 

  19. Sivaraos TC, Yap Q, Amran MA, Anand TJS, Izamshah R, Aziz AA (2013) Friction performance analysis of waste tire rubber powder reinforced polypropylene using pin-on-disk tribometer. Proced Eng 68(1):743–749. https://doi.org/10.1016/j.proeng.2013.12.248

    Article  CAS  Google Scholar 

  20. Luna CBB, Araújo EM, Siqueira DD, Morais DDS, Filhos EAS, Fook MVL (2020) Incorporation of a recycled rubber compound from the shoe industry in polystyrene: effect of SBS compatibilizer contente. J Elastomers Plast 52(1):3–28. https://doi.org/10.1177/0095244318819213

    Article  CAS  Google Scholar 

  21. Libio IC, Grassi VG, Pizzol MFD, Nachtigall SMB (2012) Toughened polystyrene with improved photoresistance: effects of the compatibilizers. J Appl Polym Sci 126(1):179–185. https://doi.org/10.1002/app.36546

    Article  CAS  Google Scholar 

  22. Abreu FOMS, Forte MMC, Liberman SA (2005) SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J Appl Polym Sci 95(2):254–263. https://doi.org/10.1002/app.21263

    Article  CAS  Google Scholar 

  23. Bassani A, Pessa LA, Hage E (2001) Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: effects of mixing condition and elastomer contente. J Appl Polym Sci 82(9):2185–2193. https://doi.org/10.1002/app.2066

    Article  CAS  Google Scholar 

  24. Lotti C, Correa CA, Canevarolo SV (2000) Mechanical and morphological characterization of polypropylene toughened with olefinic elastomer. Mater Res 3(2):37–44. https://doi.org/10.1590/S1516-14392000000200007

    Article  CAS  Google Scholar 

  25. Luna CBB, Siqueira DD, Ferreira ESB, Araújo EM, Wellen RMR (2021) Reactive processing of PA6/EPDM-MA blends as modifier for application and development of high-performance polypropylene. J Vinyl Add Tech 27(4):736–756. https://doi.org/10.1002/vnl.21846

    Article  CAS  Google Scholar 

  26. Abreu FOMS, Forte MMC, Liberman SA (2006) Morphology and mechanical properties of polypropylenes/TPEs blends. Polímeros: Ciência e Tecnol 16(1):71–78. https://doi.org/10.1590/S0104-14282006000100015

    Article  CAS  Google Scholar 

  27. Andrade DSC, Canedo EL, Carvalho LH, Barbosa R, Alves TS (2021) Characterization of poly(ethylene terephthalate) by torque rheometry. Mater Res 24(2):e20200238. https://doi.org/10.1590/1980-5373-MR-2020-0238

    Article  Google Scholar 

  28. Luna CBB, Ferreira EBS, Sousa FM, Nascimento EP, Araujo EM, Morais DDS, Bezerra EB, Wellen RMR (2022) Determination of the viscosity temperature coefficient (β) and pseudoplastic index (n) of poly(lactid acid) (PLA). MOMENTO 65:25–38. https://doi.org/10.15446/mo.n65.102254

    Article  Google Scholar 

  29. Alves TS, Neto JES, Silva SML, Carvalho LH, Canedo EL (2016) Process simulation of laboratory internal mixers. Polym Testing 50(4):94–100. https://doi.org/10.1016/j.polymertesting.2016.01.002

    Article  CAS  Google Scholar 

  30. Ribeiro VF, Júnior NSD, Riegel IC (2012) Recovering properties of recycled HIPS through incorporation of SBS triblock copolymer. Polímeros 22(2):186–192. https://doi.org/10.1590/S0104-14282012005000023

    Article  CAS  Google Scholar 

  31. Silva DF, Luna CBB, Silva G, Araújo EM, Mélo TJA (2014) Avaliação das propriedades mecânicas de blendas de poliestireno/composto de borracha reciclada (SBRr). Revista Eletrônica de Materiais e Processos 9(2):92–97

    Google Scholar 

  32. Castro LDC, Oliveira AD, Kersch M, Altstadt V, Pessan LA (2016) Effects of mixing protocol on morphology and properties of PA6/ABS blends compatibilized with MMA-MA. J Appl Polym Sci 133(27):43612. https://doi.org/10.1002/app.43612

    Article  CAS  Google Scholar 

  33. Luna CBB, Nascimento EP, Siqueira DD, Soares BG, Agrawal P, Mélo TJA, Araújo EM (2022) Tailoring nylon 6/acrylonitrile-butadiene-styrene nanocomposites for application against electromagnetic interference: evaluation of the mechanical, thermal and electrical behavior, and the electromagnetic shielding efficiency. Int J Mol Sci 23(16):9020. https://doi.org/10.3390/ijms23169020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luna CBB, Silva WA, Araújo EM, Silva LJMD, Melo JBCA, Wellen RMR (2022) From waste to potential reuse: mixtures of polypropylene/recycled copolymer polypropylene from industrial containers: seeking sustainable materials. Sustainability 14(11):6509. https://doi.org/10.3390/su14116509

    Article  CAS  Google Scholar 

  35. Oliveira AD, Larocca NM, Pessan LA (2011) Effect from the blending sequence on the properties of PA6/ABS blends compatibilized with SMA copolymer. Polímeros 21(1):27–33. https://doi.org/10.1590/S0104-14282011005000010

    Article  Google Scholar 

  36. Nascimento WA, Lima JCC, Agrawal P, Lira HL, Mélo TJA (2013) Blendas de PP/PA6: efeito da concentração de PA6 e compatibilizantes reativos nas propriedades mecânicas, térmicas e morfológicas. Revista Eletrônica de Materiais e Processos 8(3):155–162

    Google Scholar 

  37. Hernandez EH, Gamez JFH, Cepeda LF, Munoz EJC, Corral FS, Rosales SG, Valazquez GN, Morones PG, Martínez DIS (2017) Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites. J Appl Polym Sci 134(21):44864. https://doi.org/10.1002/app.44864

    Article  CAS  Google Scholar 

  38. Mello FB, Nachtigall SMB, Salles CA, Amico SC (2018) Compatibilization and mechanical properties of compression-molded polypropylene/high-impact polystyrene blends. Prog Rubber Plast Recycl Technol 34(3):117–127. https://doi.org/10.1177/1477760618798275

    Article  Google Scholar 

  39. Rapa M, Ghioca P, Matei E, Grosu E (2016) Influence of styrene block copolymers on thermal and mechanical properties of recycled polypropylene. Mater Plast 53(4):727–732

    Google Scholar 

  40. Silva LP, Rocha JS, Pacheco EBV, Bouças TAO, Furtado CRG (2008) Mechanical and morphological properties of polypropylene and regenerated tire-rubber blends. Int J Polym Mater Polym Biomater 57(6):555–568. https://doi.org/10.1080/00914030701818306

    Article  CAS  Google Scholar 

  41. Luna CBB, Siqueira DD, Araújo EM, Nascimento EP, Melo JBCA (2022) Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology. Polym Adv Technol 33(1):111–124. https://doi.org/10.1002/pat.5495

    Article  CAS  Google Scholar 

  42. Zolfaghari S, Paydayesh A, Jafari M (2019) Mechanical and thermal properties of polypropylene/silica aerogel composites. J Macromol Sci Part B 58(2):305–316. https://doi.org/10.1080/00222348.2019.1565317

    Article  CAS  Google Scholar 

  43. Chiu HT, Shiau YG, Chiu WM, Syau SS (1995) Toughening isotactic polypropylene and propylene-ethylene block copolymer with styrene-ethylene butylene-styrene triblock copolymer. J Polym Res 2(1):21–29. https://doi.org/10.1007/BF01493430

    Article  CAS  Google Scholar 

  44. Oliveira AD, Larocca NM, Paul DR, Pessan LA (2012) Effects of mixing protocol on the performance of nanocomposites based on polyamide 6/acrylonitrile–butadiene–styrene blends. Polym Eng Sci 52(9):1909–1919. https://doi.org/10.1002/pen.23152

    Article  CAS  Google Scholar 

  45. Luna CBB, Ferreira ESB, Siqueira DD, Araújo EM, Nascimento EP, Medeiros ES, Mélo TJA (2022) Electrical nanocomposites of PA6/ABS/ABS-MA reinforced with carbon nanotubes (MWCNTf) for antistatic packaging. Polym Compos 43(6):3639–3658. https://doi.org/10.1002/pc.26643

    Article  CAS  Google Scholar 

  46. Brito GF, Agrawal P, Mélo TJA (2016) Mechanical and morphological properties of PLA/BioPE blend compatibilized with E-GMA and EMA-GMA copolymers. Macromol Symp 367(1):176–182. https://doi.org/10.1002/masy.201500158

    Article  CAS  Google Scholar 

  47. Luna CBB, Siqueira DD, Araújo EM, Wellen RMR (2021) Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters. Momento 62:1–17. https://doi.org/10.15446/mo.n62.89099

    Article  Google Scholar 

  48. Massaroto M, Crespo JS, Zattera AJ, Zeni M (2008) Characterization of ground SBR scraps from shoe industry. Mater Res 11(1):81–84. https://doi.org/10.1590/S1516-14392008000100015

    Article  Google Scholar 

  49. Luna CBB, Silva DF, Araújo EM, Mélo TJA, Bezerra EOT, Siqueira DD, Oliveira AD (2019) Blends of polystyrene/shoes waste (SBRr): influence of mixture sequence and compatibilizer. Macromol Symp 383(1):1800046. https://doi.org/10.1002/masy.201800046

    Article  CAS  Google Scholar 

  50. Formela K, Kuranska M, Barczewski M (2022) Recent advances in development of waste-based polymer materials: a review. Polymers 14(5):1050. https://doi.org/10.3390/polym14051050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Franco MA, Gonzalez CF, Domingues MA, Latasa JMP, Serrano VG (2010) Devulcanization and demineralization of used tire rubber by thermal chemical methods: a study by X-ray diffraction. Energy Fuels 24(6):3401–3409. https://doi.org/10.1021/ef901523t

    Article  CAS  Google Scholar 

  52. Libano EVDG, Visconte LLY, Pacheco EBAV (2011) Propriedades térmicas de compósitos de polipropileno e bentonita organofílica. Polímeros 22(5):430–435. https://doi.org/10.1590/S0104-14282012005000063

    Article  CAS  Google Scholar 

  53. Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A (2001) A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer 42(23):9633–9640. https://doi.org/10.1016/S0032-3861(01)00512-2

    Article  CAS  Google Scholar 

  54. Garcia PS, Sousa FDB, Lima JA, Cruz SA, Scuracchio CH (2015) Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times. Express Polym Lett 9(11):1015–1026

    Article  CAS  Google Scholar 

  55. Alves AM, Araújo APM, Agrawal P, Cavalcanti SN, Arimatéia RR, Freitas NL, Mélo TJA (2018) Influence of the alumina synthesized by combustion reaction on the properties of composites with polypropylene matrix. Matéria (Rio J.) 23(4):12230. https://doi.org/10.1590/S1517-707620180004.0564

    Article  Google Scholar 

  56. Mélo TJA, Carvalho LH, Calumby RB, Brito KGQ, Almeida JRM, Spieth E (2000) Mechanical properties and morphology of a PP/HIPS polymer blend compatibilized with SEBS. Polímeros Ciência e Tecnologia 10(2):82–89. https://doi.org/10.1590/S0104-14282000000200010

    Article  Google Scholar 

  57. Koning C, Duin MV, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23(4):707–757. https://doi.org/10.1016/S0079-6700(97)00054-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (National Council for Scientific and Technological Development, Brasilia/DF, Brazil) (Process: 150925/2022-0). Prof Edcleide Araújo (Number:312014/2020-1) and Prof Renate Wellen (Number: 303426/2021-7) are CNPq fellows. The authors deeply thank UFCG for the infrastructure and Kraton for donating the SEBS copolymer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bruno Barreto Luna.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna, C.B.B., da Silva, F.S., da Silva Barbosa Ferreira, E. et al. Transforming vulcanized styrene–butadiene waste into valuable raw material: an opportunity for high-impact polypropylene production. Polym. Bull. 81, 423–447 (2024). https://doi.org/10.1007/s00289-023-04729-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04729-1

Keywords

Navigation