Skip to main content
Log in

Effect of testing condition and crystalline properties on the mechanical α-relaxation of polyethylene

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The mechanical α-relaxation of polyethylene was studied under different testing conditions and distinct polyethylene sheets. The condition of 2.5 mm thickness and 3 ℃/min was in favor of observing and analyzing the α-relaxation. The α2-relaxation peak in tan δ curves disappears under the high-frequency condition of 10 Hz since the α2-relaxation temperature is higher than melting temperature, which provide the support for the explanation on the disappearance of the α2-relaxation caused by crystalline properties. The influences of thermal history for the sheets of linear and branched polyethylene, as well as melting index for linear polyethylene on α-relaxation can be attributed to both lamella thickness and crystallinity. The higher lamella thickness and crystallinity, the more obviousness and higher temperature of α1-relaxation, as well as the higher temperature of α2-relaxation or cause the disappearance of α2-relaxation peak. The variation of multiple α-relaxations was interpreted using a microcrystalline structure and macro-crystallinity. The chain motion in amorphous being more restricted and the chain motion in crystal lattices requiring more energy contribute to the temperature increasing of α1- and α2-relaxation, respectively. The higher remaining crystallinity during the premelting process causes the increase in the α2-relaxation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lv F, Chen X, Wan C, Su F, Ji Y, Lin Y, Li X, Li L (2017) Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting. Macromolecules 50:6385–6395

    Article  CAS  Google Scholar 

  2. Cerrada ML, Pérez E, Lourenço JP, Bento A, Ribeiro MR (2013) Decorated MCM-41/polyethylene hybrids: crystalline details and viscoelastic behavior. Polymer 54:2611–2620

    Article  CAS  Google Scholar 

  3. Böhning M, Niebergall U, Adam A, Stark W (2014) Influence of biodiesel sorption on temperature-dependent impact properties of polyethylene. Polym Test 40:133–142

    Article  Google Scholar 

  4. Böhning M, Niebergall U, Adam A, Stark W (2014) Impact of biodiesel sorption on mechanical properties of polyethylene. Polym Test 34:17–24

    Article  Google Scholar 

  5. Eichelter J, Wilhelm H, Eder A, Mautner A, Bismarck A (2020) Influence of the α-relaxation on the high-velocity stretchability of isotactic polypropylene. Polymer 200:122593

    Article  CAS  Google Scholar 

  6. Stamboliev G, Suljovrujic E (2010) A dielectric study of molecular relaxations in irradiated high density polyethylene. Polym Degrad and Stab 95:593–599

    Article  CAS  Google Scholar 

  7. Al-Malaika S, Peng X, Watson H (2006) Metallocene ethylene-1-octene copolymers: Influence of comonomer content on thermo-mechanical, rheological, and thermo-oxidative behaviours before and after melt processing in an internal mixer. Polym Degrad and Stab 91:3131–3148

    Article  CAS  Google Scholar 

  8. Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF (1985) Dynamic mechanical relaxations in polyethylene. Macromolecules 18:1302–1309

    Article  CAS  Google Scholar 

  9. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test 31:31–38

    Article  CAS  Google Scholar 

  10. Kuriyagawa M, Nitta K-h (2011) Structural explanation on natural draw ratio of metallocene-catalyzed high density polyethylene. Polymer 52:3469–3477

    Article  CAS  Google Scholar 

  11. Wang L, Yang B, Yang W, Sun N, Yin B, Feng J-M, Yang M-B (2011) Morphology and mechanical property of high-density polyethylene parts prepared by gas-assisted injection molding. Colloid Polym Sci 289:1661–1671

    Article  CAS  Google Scholar 

  12. Guo M (2002) Dynamic mechanical thermal analysis of polymers and composite materials. Chemical Industry, Beijing.

  13. Martín S, Vega JF, Expósito MT, Flores A, Martínez-Salazar J (2011) A three-phase microstructural model to explain the mechanical relaxations of branched polyethylene: a DSC, WAXD and DMTA combined study. Colloid Polym Sci 289:257–268

    Article  Google Scholar 

  14. Jordens K, Wilkes GL, Janzen J, Rohlfing DC, Welch MB (2000) The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes. Polymer 41:7175–7192

    Article  CAS  Google Scholar 

  15. Qian BG (1986) Transformation and relaxation of polymers. Science, Beijing

    Google Scholar 

  16. Men Y, Rieger J, Endeler H-F, Lilge D (2003) Mechanical α-Process in Polyethylene. Macromolecules 36:4689–4691

    Article  CAS  Google Scholar 

  17. Ito A, Hioki K, Kono K, Hiejima Y, Nitta K-h (2020) Effects of Liquid Paraffin on Dynamic Mechanical Properties of Linear High-Density Polyethylene. Macromolecules 53:8459–8466

    Article  CAS  Google Scholar 

  18. Henriques IR, Borges LA, Costa MF, Soares BG, Castello DA (2018) Comparisons of complex modulus provided by different DMA. Polym Test 72:394–406

    Article  CAS  Google Scholar 

  19. Lee-Sullivan P, Dykeman D (2000) Guidelines for performing storage modulus measurements using the TA Instruments DMA 2980 three-point bend mode: I. Amplitude effects1. Polym Test 19:155–164

    Article  CAS  Google Scholar 

  20. Shinoj S, Visvanathan R, Panigrahi S, Varadharaju N (2011) Dynamic mechanical properties of oil palm fibre (OPF)-linear low density polyethylene (LLDPE) biocomposites and study of fibre–matrix interactions. Biosyst Eng 109:99–107

    Article  Google Scholar 

  21. Sewda K, Maiti SN (2013) Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym Bull 70:2657–2674

    Article  CAS  Google Scholar 

  22. Fouad H, Mourad AHI, Barton DC (2005) Effect of pre-heat treatment on the static and dynamic thermo-mechanical properties of ultra-high molecular weight polyethylene. Polym Test 24:549–556

    Article  CAS  Google Scholar 

  23. Pegoretti A, Ashkar M, Migliaresi C, Marom G (2000) Relaxation processes in polyethylene fibre-reinforced polyethylene composites. Compo Sci Technol 60:1181–1189

    Article  CAS  Google Scholar 

  24. Sarathi R, Das S, Anil Kumar CR, Velmurugan R (2004) Analysis of failure of crosslinked polyethylene cables because of electrical treeing: a physicochemical approach. J Appl Polym Sci 92:2169–2178

    Article  CAS  Google Scholar 

  25. Stadler FJ, Kaschta J, Münstedt H (2005) Dynamic-mechanical behavior of polyethylenes and ethene-/α-olefin-copolymers. Part I α′-Relaxation Polymer 46:10311–10320

    CAS  Google Scholar 

  26. Nitta Kh, Tanaka A (2001) Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 42:1219–1226

    Article  CAS  Google Scholar 

  27. Li Z, Ye C, Feng L, Xia J, Zhang L, Zhao W, Hu Y (2019) Crystal morphology and corresponding physical properties of nascent ultra-high molecular weight polyethylene powder with short-branched chains. Polymer 181:121758

    Article  CAS  Google Scholar 

  28. Razavi-Nouri M, Hay JN (2001) Thermal and dynamic mechanical properties of metallocene polyethylene. Polymer 42:8621–8627

    Article  CAS  Google Scholar 

  29. Matthews RG, Unwin AP, Ward IM, Capaccio G (1999) A comparison of the dynamic mechanical relaxation behavior of linear low- and high-density polyethylenes. J Macromol Sci B 38:123–143

    Article  Google Scholar 

  30. Alberola N, Cavaille JY, Perez J (1990) Mechanical spectrometry of alpha relaxations of high-density polyethylene. J Polym Sci B Polym Phys 28:569–586

    Article  CAS  Google Scholar 

  31. Yoo S, Holloman C, Tomasko D, Koelling K, Pascall MA (2014) Effect of high pressure processing on the thermal and mechanical properties of polyethylene films measured by dynamical mechanical and tensile analyses. Packag Technol Sci 27:169–178

    Article  CAS  Google Scholar 

  32. Ghazavizadeh A, Rutledge GC, Atai AA, Ahzi S, Rémond Y, Soltani N (2013) Micromechanical characterization of the interphase layer in semi-crystalline polyethylene. J Polym Sci B Polym Phys 51:1228–1243

    Article  CAS  Google Scholar 

  33. Flory PJ, Yoon DY, Dill KA (1984) The interphase in Lamellar Semicrystalline Polymers. Maromolecules 17:862–868

    Article  CAS  Google Scholar 

  34. Mano JF, Sousa RA, Reis RL, Cunha AM, Bevis MJ (2001) Viscoelastic behaviour and time–temperature correspondence of HDPE with varying levels of process-induced orientation. Polymer 42:6187–6198

    Article  CAS  Google Scholar 

  35. Zhou H, Wilkes GL (1997) Orientation anisotropy of the mechanical α relaxation of high-density polyethylene films having a well-defined stacked lamellar morphology. Macromolecules 30:2412–2421

    Article  CAS  Google Scholar 

  36. Danch A, Osoba W, Stelzer F (2003) On the α relaxation of the constrained amorphous phase in poly(ethylene). Eur Polym J 39:2051–2058

    Article  CAS  Google Scholar 

  37. Kolesov IS, Androsch R, Radusch H-J (2005) Effect of crystal morphology and crystallinity on the mechanical α- and β-relaxation processes of short-chain branched polyethylene. Macromolecules 38:445–453

    Article  CAS  Google Scholar 

  38. Uehara H, Yamanobe T, Komoto T (2000) Relationship between solid-state molecular motion and morphology for ultrahigh molecular weight polyethylene crystallized under different conditions. Macromolecules 33:4861–4870

    Article  CAS  Google Scholar 

  39. Munaro M, Akcelrud L (2008) Correlations between composition and crystallinity of LDPE/HDPE blends. J Polym Res 15:83–88

    Article  CAS  Google Scholar 

  40. Takayanagi M (1974) Some morphological factors in thermomechanical analysis of crystalline polymers. J Macromol Sci B 9:391–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Ye.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Ye, C., Cuo, N. et al. Effect of testing condition and crystalline properties on the mechanical α-relaxation of polyethylene. Polym. Bull. 81, 611–632 (2024). https://doi.org/10.1007/s00289-023-04726-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04726-4

Keywords

Navigation