Skip to main content

Advertisement

Log in

Review of advances in improving thermal, mechanical and electrochemical properties of polyaniline composite for supercapacitor application

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) is one of the most utilized conducting polymers for energy storage applications due to its ease of processing, flexibility, environmental friendliness and high theoretical pseudocapacitance. However, the major limitation to the use of the PANI material for energy storage and conversion purposes has been its poor cyclability and poor capacity retention, which normally results during the charge–discharge process of the electrode. The introduction of dopants and reinforcing materials are valid ways of solving these challenges. This review study focusses on PANI and its composites as energy storage materials, and the work done so far to improve their mechanical, thermal and electrochemical performance. Emphasis will be given on PANI-carbon composite, PANI-acid-doped and other nanocomposites of PANI with carbon materials and metal compounds. The review also includes the effects of concentration and processing techniques on the properties and performance of the PANI composite supercapacitor electrodes. Finally, the authors end the review with advances in the performance of PANI composites as energy storage material, challenges and recommendations for future improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2016, Elsevier

Fig. 2

Copyright © 2016, Elsevier

Fig. 3

Copyright © 2011, Elsevier

Fig. 4

Copyright © 2017, Firenze University Press

Fig. 5

Copyright © 2014, Elsevier

Fig. 6

© 2018, Royal Society of Chemistry

Fig. 7

Copyright © 2018, Royal Society of Chemistry

Fig. 8

Copyright © 2018, IOP Science

Fig. 9

Copyright © 2020, MDPI

Fig. 10

Copyright © 2016, Elsevier

Fig. 11

Copyright © 2018, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Zuo W, Li R, Zhou C et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1–21. https://doi.org/10.1002/advs.201600539

    Article  CAS  Google Scholar 

  2. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  3. Azcárate C, Mallor F, Mateo P (2017) Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource. Renew Energy. https://doi.org/10.1016/j.renene.2016.10.064

    Article  Google Scholar 

  4. McKone JR, DiSalvo FJ, Abruña HD (2017) Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J Mater Chem A Mater 5:5362–5372. https://doi.org/10.1039/C7TA00555E

    Article  CAS  Google Scholar 

  5. Fagiolari L, Sampò M, Lamberti A et al (2022) Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Mater 51:400–434. https://doi.org/10.1016/J.ENSM.2022.06.051

    Article  Google Scholar 

  6. Bandara TMWJ, Hansadi JMC, Bella F (2022) A review of textile dye-sensitized solar cells for wearable electronics. Ionics 2022 28:2563–2583. https://doi.org/10.1007/S11581-022-04582-8

  7. Ji X (2019) A paradigm of storage batteries. Energy Environ Sci 12:3203–3224. https://doi.org/10.1039/C9EE02356A

    Article  CAS  Google Scholar 

  8. Wang H, Zhu QL, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2:52–80. https://doi.org/10.1016/J.CHEMPR.2016.12.002

    Article  CAS  Google Scholar 

  9. Lee D, Song YH, Choi UH, Kim J (2019) Highly flexible and stable solid-state supercapacitors based on a homogeneous thin ion gel polymer electrolyte using a Poly(dimethylsiloxane) stamp. ACS Appl Mater Interfaces 11:42221–42232. https://doi.org/10.1021/ACSAMI.9B14990/ASSET/IMAGES/LARGE/AM9B14990_0009.JPEG

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Shi Y, Zhang Y et al (2019) All-printed substrate-versatile microsupercapacitors with thermoreversible self-protection behavior based on safe sol-gel transition electrolytes. ACS Appl Mater Interfaces 11:29960–29969. https://doi.org/10.1021/ACSAMI.9B09498/ASSET/IMAGES/LARGE/AM9B09498_0002.JPEG

    Article  CAS  PubMed  Google Scholar 

  11. Fic K, Gorska B, Bujewska P et al (2019) Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochim Acta 314:1–8. https://doi.org/10.1016/J.ELECTACTA.2019.04.161

    Article  CAS  Google Scholar 

  12. Wang YY, Diao WY, Fan CY et al (2019) Benign recycling of spent batteries towards all-solid-state Lithium batteries. Chem A Eur J 25:8975–8981. https://doi.org/10.1002/CHEM.201900845

    Article  CAS  Google Scholar 

  13. Zhang Q, Liang F, Yao Y et al (2019) Sodium-based solid-state electrolyte and its applications in energy. Prog Chem 31:210. https://doi.org/10.7536/PC180434

    Article  CAS  Google Scholar 

  14. Ruiz-Martínez D, Gómez R (2019) The liquid ammoniate of sodium iodide as an alternative electrolyte for sodium ion batteries: the case of titanium dioxide nanotube electrodes. Energy Storage Mater 22:424–432. https://doi.org/10.1016/J.ENSM.2019.07.036

    Article  Google Scholar 

  15. Meng J, Zhu L, Haruna AB et al (2021) Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 64:1888–1907. https://doi.org/10.1007/S11426-021-1105-5

    Article  CAS  Google Scholar 

  16. Al Shaqsi AZ, Sopian K, Al-Hinai A (2020) Review of energy storage services, applications, limitations, and benefits. Energy Rep 6:288–306. https://doi.org/10.1016/J.EGYR.2020.07.028

  17. Devi C, Swaroop R, Arya A et al (2022) Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films. Polym Bull 79:4701–4719. https://doi.org/10.1007/S00289-021-03737-3/FIGURES/12

    Article  CAS  Google Scholar 

  18. Worku MY (2022) Recent Advances in energy storage systems for renewable source grid integration: a comprehensive review. Sustainability (Switzerland) 14:5985

    Article  Google Scholar 

  19. Hao L, Li X, Zhi L (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904. https://doi.org/10.1002/ADMA.201301204

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Gong L (2020) Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion. Materials 13:548. https://doi.org/10.3390/MA13030548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yanilmaz M, Dirican M, Asiri AM, Zhang X (2019) Flexible polyaniline-carbon nanofiber supercapacitor electrodes. J Energy Stor 24:100766. https://doi.org/10.1016/J.EST.2019.100766

    Article  Google Scholar 

  22. Jiang W, Yu D, Zhang Q et al (2015) Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv Funct Mater. https://doi.org/10.1002/adfm.201403354

    Article  Google Scholar 

  23. Zhijun C, Keting Z, Yongqiang Y et al (2022) Ta2O5-graphene Schottky heterojunction composite symmetric supercapacitor with ultrahigh energy density for self-powered pulse sensor driven by green long afterglow phosphor-enhanced solar cell. Appl Surf Sci 605:154730. https://doi.org/10.1016/J.APSUSC.2022.154730

    Article  Google Scholar 

  24. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv Mater Dev 1:225–255. https://doi.org/10.1016/J.JSAMD.2016.08.001

    Article  Google Scholar 

  25. Abbas Q, Raza R, Shabbir I, Olabi AG (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: a review. J Sci: Adv Mater Dev 4:341–352. https://doi.org/10.1016/J.JSAMD.2019.07.007

    Article  Google Scholar 

  26. Gao Z, Liu X, Chang J et al (2017) Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J Power Sour 337:25–35. https://doi.org/10.1016/J.JPOWSOUR.2016.10.114

    Article  CAS  Google Scholar 

  27. Santos MC, Bizeto MA, Camilo FF (2021) Polyaniline-niobium oxide nanohybrids with photocatalytic activity under visible light irradiation. New J Chem. https://doi.org/10.1039/d0nj06215d

    Article  Google Scholar 

  28. Namsheer K, Rout CS (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11:5659–5697. https://doi.org/10.1039/D0RA07800J

    Article  Google Scholar 

  29. Li C, Bai H, Shi G et al (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409. https://doi.org/10.1039/B816681C

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Peng L, Ding Y et al (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696. https://doi.org/10.1039/C5CS00362H

    Article  CAS  PubMed  Google Scholar 

  31. Sumdani MG, Islam MR, Yahaya ANA, Safie SI (2022) Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: a review. Polym Eng Sci 62:269–303. https://doi.org/10.1002/PEN.25859

    Article  CAS  Google Scholar 

  32. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. https://doi.org/10.1021/CR050149Z

    Article  PubMed  Google Scholar 

  33. Wang D, Lu C, Zhao J et al (2017) High energy conversion efficiency conducting polymer actuators based on PEDOT: PSS/MWCNTs composite electrode. RSC Adv 7:31264–31271. https://doi.org/10.1039/C7RA05469F

    Article  CAS  Google Scholar 

  34. Berridge R, Wright SP, Skabara PJ et al (2007) Electrochromic properties of a fast switching, dual colour polythiophene bearing non-planar dithiinoquinoxaline units. J Mater Chem 17:225–231. https://doi.org/10.1039/B613879A

    Article  CAS  Google Scholar 

  35. Ghosh S, Das S, Mosquera MEG (2020) Conducting polymer-based nanohybrids for fuel cell application. Polymers 12:2993. https://doi.org/10.3390/POLYM12122993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shukla SK, Kushwaha CS, Singh NB (2017) Recent developments in conducting polymer-based composites for sensing devices. Mater Today Proc 4:5672–5681. https://doi.org/10.1016/J.MATPR.2017.06.029

    Article  Google Scholar 

  37. Singh N, Riaz U (2022) Recent trends on synthetic approaches and application studies of conducting polymers and copolymers: a review. Polym Bull. https://doi.org/10.1007/S00289-021-03987-1/FIGURES/20

    Article  Google Scholar 

  38. Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494. https://doi.org/10.1002/ADMA.200390113

    Article  CAS  Google Scholar 

  39. Kenry K, Liu B (2018) Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromol 19:1783–1803. https://doi.org/10.1021/ACS.BIOMAC.8B00275/ASSET/IMAGES/LARGE/BM-2018-00275E_0011.JPEG

    Article  CAS  Google Scholar 

  40. Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon N Y 40:1775–1787. https://doi.org/10.1016/S0008-6223(02)00045-3

    Article  CAS  Google Scholar 

  41. Mozafari M, Chauhan NPS (2019) Fundamentals and emerging applications of polyaniline. Elsevier. https://doi.org/10.1016/B978-0-12-817915-4.00001-4

    Article  Google Scholar 

  42. Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M (2018) Biomaterials selection for neuroprosthetics. Curr Opin Biomed Eng 6:99–109. https://doi.org/10.1016/j.cobme.2018.05.003

    Article  Google Scholar 

  43. Hafshejani TM, Zamanian A, Venugopal JR et al (2017) Antibacterial glass-ionomer cement restorative materials: a critical review on the status of extended-release formulations. J Control Release 262:317–328

    Article  CAS  PubMed  Google Scholar 

  44. Zarrintaj P, Ahmadi Z, Vahabi H et al (2018) Polyaniline in retrospect and prospect. Mater Today Proc 5(7):15852–15860. https://doi.org/10.1016/j.matpr.2018.05.084

    Article  CAS  Google Scholar 

  45. Lokhande PE, Chavan US, Pandey A (2019) Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem Energy Rev 3:155–186. https://doi.org/10.1007/S41918-019-00057-Z

    Article  Google Scholar 

  46. Nilanjan C, Monalisa C, Satheesh K, Chakraborty A (2021) Influence of La3+ induced defects on MnO2 –carbon nanotube hybrid electrodes for supercapacitors. Mater Adv 2:366–375. https://doi.org/10.1039/D0MA00696C

    Article  Google Scholar 

  47. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199. https://doi.org/10.1016/J.MATDES.2019.108199

    Article  CAS  Google Scholar 

  48. Sassin MB, Mansour AN, Pettigrew KA et al (2010) Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 4:4505–4514. https://doi.org/10.1021/NN100572A

    Article  CAS  PubMed  Google Scholar 

  49. Raghu MS, Yogesh Kumar K, Rao S et al (2018) Simple fabrication of reduced graphene oxide -few layer MoS2 nanocomposite for enhanced electrochemical performance in supercapacitors and water purification. Physica B Condens Matter. https://doi.org/10.1016/j.physb.2018.02.017

    Article  Google Scholar 

  50. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sour 196:1–12. https://doi.org/10.1016/J.JPOWSOUR.2010.06.084

    Article  CAS  Google Scholar 

  51. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/J.NANOEN.2017.04.040

    Article  CAS  Google Scholar 

  52. Rasmussen SC (2017) The early history of polyaniline: discovery and origins. An Int J Histo Chem. 1:99–109. https://doi.org/10.13128/substantia-30

  53. Eskandari E, Kosari M, Davood Abadi Farahani MH et al (2020) A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.115901

    Article  Google Scholar 

  54. Geniès EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139–182. https://doi.org/10.1016/0379-6779(90)90050-U

    Article  Google Scholar 

  55. Feast WJ, Tsibouklis J, Pouwer KL et al (1996) Synthesis, processing, and material properties of conjugated polymers. Polymer (Guildf) 37:5017–5047. https://doi.org/10.1016/0032-3861(96)00439-9

    Article  CAS  Google Scholar 

  56. Macdiarmid AG (1997) Polyaniline and polypyrrole: Where are we headed? Synth Met 84:27–34. https://doi.org/10.1016/S0379-6779(97)80658-3

    Article  CAS  Google Scholar 

  57. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821. https://doi.org/10.1016/J.BIOS.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  58. MacDiarmid AG, Epstein AJ (1989) Polyanilines: a novel class of conducting polymers. Faraday Discuss Chem Soc 88:317–332. https://doi.org/10.1039/DC9898800317

    Article  CAS  Google Scholar 

  59. Heme HN, Alif MSN, Rahat SMSM, Shuchi SB (2021) Recent progress in polyaniline composites for high capacity energy storage: a review. J Energy Storage 42:103018. https://doi.org/10.1016/J.EST.2021.103018

    Article  Google Scholar 

  60. Djara R, Holade Y, Merzouki A et al (2020) Insights from the physicochemical and electrochemical screening of the potentiality of the chemically synthesized polyaniline. J Electrochem Soc 167:066503. https://doi.org/10.1149/1945-7111/AB7D40

    Article  CAS  Google Scholar 

  61. Kumar A, Kumar V, Awasthi K (2017) Polyaniline–carbon Nanotube composites: preparation methods, properties, and applications. Polym-Plast Technol Eng 57(2):70–97. https://doi.org/10.1080/03602559.2017.1300817

    Article  CAS  Google Scholar 

  62. Bumaa B, Uyanga E, Sevjidsuren G et al (2022) Evolution of electrochemical properties of polyaniline doped by graphene oxide. Polym Bull 79:7443–7458. https://doi.org/10.1007/S00289-021-03837-0

    Article  CAS  Google Scholar 

  63. Hatchett DW, Josowicz M, Janata J (1999) Comparison of chemically and electrochemically synthesized polyaniline films. J Electrochem Soc 146:4535–4538. https://doi.org/10.1149/1.1392670/XML

    Article  CAS  Google Scholar 

  64. Tran HD, D’Arcy JM, Wang Y et al (2011) The oxidation of aniline to produce “polyaniline ”: a process yielding many different nanoscale structures. J Mater Chem 21:3534–3550. https://doi.org/10.1039/C0JM02699A

    Article  CAS  Google Scholar 

  65. Amarnath CA, Kim J, Kim K et al (2008) Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer (Guildf) 49:432–437. https://doi.org/10.1016/J.POLYMER.2007.12.005

    Article  CAS  Google Scholar 

  66. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci Series C. 56:144–153. https://doi.org/10.1134/S1811238214010032

  67. Syed AA, Dinesan MK (1991) Review: polyaniline—a novel polymeric material. Talanta 38:815–837. https://doi.org/10.1016/0039-9140(91)80261-W

    Article  CAS  PubMed  Google Scholar 

  68. Sapurina I, Bubulinca C, Trchová M et al (2022) Solid manganese dioxide as heterogeneous oxidant of aniline in the preparation of conducting polyaniline or polyaniline/manganese dioxide composites. Colloids Surf A Physicochem Eng Asp 638:128298. https://doi.org/10.1016/J.COLSURFA.2022.128298

    Article  CAS  Google Scholar 

  69. Qiu Y, Gao L (2005) Novel polyaniline/titanium nitride nanocomposite: controllable structures and electrical/electrochemical properties. J Phys Chem B 109:19732–19740. https://doi.org/10.1021/JP053845B

    Article  CAS  PubMed  Google Scholar 

  70. Fusalba F, Gouérec P, Villers D, Bélanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1. https://doi.org/10.1149/1.1339036/XML

    Article  CAS  Google Scholar 

  71. Sivakkumar SR, Kim WJ, Choi JA et al (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sour 171:1062–1068. https://doi.org/10.1016/J.JPOWSOUR.2007.05.103

    Article  CAS  Google Scholar 

  72. Li H, Wang J, Chu Q et al (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sour 190:578–586. https://doi.org/10.1016/J.JPOWSOUR.2009.01.052

    Article  CAS  Google Scholar 

  73. Wang X, Deng J, Duan X et al (2014) Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J Mater Chem A Mater 2:12323–12329. https://doi.org/10.1039/C4TA02231A

    Article  CAS  Google Scholar 

  74. Wang X, Liu D, Deng J et al (2015) Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors. RSC Adv 5:78545–78552. https://doi.org/10.1039/C5RA17327B

    Article  CAS  Google Scholar 

  75. Macherla N, Singh K, Nerella M et al (2022) Improved performance of flexible supercapacitor using naphthalene sulfonic acid-doped polyaniline/sulfur-doped reduced graphene oxide nanocomposites. Int J Energy Res. https://doi.org/10.1002/ER.7589

    Article  Google Scholar 

  76. Bhadra J, Madi NK, Al-Thani NJ, Al-Maadeed MA (2014) Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties. Synth Met 191:126–134. https://doi.org/10.1016/J.SYNTHMET.2014.03.003

    Article  CAS  Google Scholar 

  77. Lu X, Dou H, Gao B et al (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56:5115–5121. https://doi.org/10.1016/J.ELECTACTA.2011.03.066

    Article  CAS  Google Scholar 

  78. Long C, Jiang L, Wu X et al (2015) Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93:412–420. https://doi.org/10.1016/J.CARBON.2015.05.040

    Article  CAS  Google Scholar 

  79. Eiki I, Sylwia M, Masaharu O et al (2007) Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Mater 22:321–326. https://doi.org/10.1016/S1872-5805(08)60003-7

    Article  Google Scholar 

  80. Fan T, Tong S, Zeng W et al (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86. https://doi.org/10.1016/J.SYNTHMET.2014.11.017

    Article  CAS  Google Scholar 

  81. Lebedeva MV, Ayupov AB, Yeletsky PM, Parmon VN (2018) Rice husk derived activated carbon/polyaniline composites as active materials for supercapacitors. Int J Electrochem Sci 13:3674–3690. https://doi.org/10.20964/2018.04.34

  82. Tayel MB, Soliman MM, Ebrahim S, Harb ME (2016) Sprayed polyaniline layer onto chemically reduced graphene oxide as electrode for high performance supercapacitor. Synth Met 217:237–243. https://doi.org/10.1016/J.SYNTHMET.2016.04.011

    Article  CAS  Google Scholar 

  83. Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/B813846J

    Article  CAS  PubMed  Google Scholar 

  84. Liu P, Yan J, Guang Z et al (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sour 424:108–130. https://doi.org/10.1016/J.JPOWSOUR.2019.03.094

    Article  CAS  Google Scholar 

  85. Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline/activated carbon nanocomposite for supercapacitor application. J Polym Res 23:1–11. https://doi.org/10.1007/S10965-016-1031-4/FIGURES/11

    Article  Google Scholar 

  86. Patil DS, Pawar SA, Devan RS et al (2014) Improved electrochemical performance of activated carbon/polyaniline composite electrode. Mater Lett 117:248–251. https://doi.org/10.1016/J.MATLET.2013.11.129

    Article  CAS  Google Scholar 

  87. Zhou X, Li L, Dong S et al (2012) A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J Solid State Electrochem 16:877–882. https://doi.org/10.1007/S10008-011-1435-3

    Article  CAS  Google Scholar 

  88. Sottiudom S, Srikulkit K (2018) Preparation and electrical properties of activated carbon grafted with polyaniline nanofiber. Key Eng Mater 773:62–66. https://doi.org/10.4028/www.scientific.net/KEM.773.62

    Article  Google Scholar 

  89. Quijada C, Leite-Rosa L, Berenguer R, Bou-Belda E (2019) Enhanced adsorptive properties and pseudocapacitance of flexible polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell. Materials 12:2516. https://doi.org/10.3390/MA12162516

  90. Fonseca CP, Almeida DAL, Baldan MR, Ferreira NG (2011) Influence of the PAni morphology deposited on the carbon fiber: an analysis of the capacitive behavior of this hybrid composite. Chem Phys Lett 511:73–76. https://doi.org/10.1016/J.CPLETT.2011.05.042

    Article  CAS  Google Scholar 

  91. He X, Gao B, Wang G et al (2013) A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochim Acta 111:210–215. https://doi.org/10.1016/J.ELECTACTA.2013.07.226

    Article  CAS  Google Scholar 

  92. Salinas-Torres D, Sieben JM, Lozano-Castelló D et al (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochim Acta 89:326–333. https://doi.org/10.1016/J.ELECTACTA.2012.11.039

    Article  CAS  Google Scholar 

  93. Acharya S, Sahoo S, Sonal S et al (2020) Adsorbed Cr(VI) based activated carbon/polyaniline nanocomposite: a superior electrode material for asymmetric supercapacitor device. Compos B Eng 193:107913. https://doi.org/10.1016/J.COMPOSITESB.2020.107913

    Article  CAS  Google Scholar 

  94. Yu P, Li Y, Yu X et al (2013) Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir 29:12051–12058. https://doi.org/10.1021/LA402404A/SUPPL_FILE/LA402404A_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  95. Dong L, Liang G, Xu C et al (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248. https://doi.org/10.1016/J.NANOEN.2017.02.031

    Article  CAS  Google Scholar 

  96. Zhong M, Song Y, Li Y et al (2012) Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. J Power Sour 217:6–12. https://doi.org/10.1016/J.JPOWSOUR.2012.05.086

    Article  CAS  Google Scholar 

  97. Hu CC, Li WY, Lin JY (2004) The capacitive characteristics of supercapacitors consisting of activated carbon fabric–polyaniline composites in NaNO3. J Power Sour 137:152–157. https://doi.org/10.1016/J.JPOWSOUR.2004.05.040

    Article  CAS  Google Scholar 

  98. Cheng Q, Tang J, Ma J et al (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115:23584–23590. https://doi.org/10.1021/JP203852P/ASSET/IMAGES/LARGE/JP-2011-03852P_0007.JPEG

    Article  CAS  Google Scholar 

  99. Horng YY, Lu YC, Hsu YK et al (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sour 195:4418–4422. https://doi.org/10.1016/J.JPOWSOUR.2010.01.046

    Article  CAS  Google Scholar 

  100. Elanthamilan E, Sathiyan A, Rajkumar S et al (2018) Polyaniline based charcoal/Ni nanocomposite material for high performance supercapacitors. Sustain Energy Fuels 2:811–819. https://doi.org/10.1039/C7SE00490G

    Article  CAS  Google Scholar 

  101. Liu H, Xu B, Jia M et al (2015) Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl Surf Sci 332:40–46. https://doi.org/10.1016/J.APSUSC.2015.01.129

    Article  CAS  Google Scholar 

  102. Woo SW, Dokko K, Nakano H, Kanamura K (2009) Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors. J Power Sour 190:596–600. https://doi.org/10.1016/J.JPOWSOUR.2009.01.050

    Article  CAS  Google Scholar 

  103. Zhang LL, Li S, Zhang J et al (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22:1195–1202. https://doi.org/10.1021/CM902685M/ASSET/IMAGES/LARGE/CM-2009-02685M_0012.JPEG

    Article  CAS  Google Scholar 

  104. Miao F, Shao C, Li X et al (2016) Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. J Power Sour 329:516–524. https://doi.org/10.1016/J.JPOWSOUR.2016.08.111

    Article  CAS  Google Scholar 

  105. Rattanaveeranon S, Asanithi P (2019) Effect of Polyaniline content on the capacitance of Polyaniline/Carbon powder composite. J Phys Conf Ser 1380:012140. https://doi.org/10.1088/1742-6596/1380/1/012140

    Article  CAS  Google Scholar 

  106. Cai ZY, Pei LZ, Pei YQ et al (2021) Effect of polyaniline mass composition on electrochemical of active carbon/polyaniline as supercapacitor electrode. IOP Conf Ser Mater Sci Eng 1125:012001. https://doi.org/10.1088/1757-899X/1125/1/012001

    Article  Google Scholar 

  107. Zeplin G, Neiva EGC (2021) One-pot green synthesis of graphene oxide/MnO2/polyaniline nanocomposites applied in aqueous and neutral supercapacitors and sensors. J Electroanal Chem 902:115776. https://doi.org/10.1016/J.JELECHEM.2021.115776

    Article  CAS  Google Scholar 

  108. Bai Y, Sun G, Chen S, et al (2017) Reduced Graphene Oxide/Nickel Oxide/Polyaniline: Preparation and properties investigation as supercapacitor electrode material. Int J Electrochem Sci 12:652–662. https://doi.org/10.20964/2017.01.20

  109. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8:1805–1834. https://doi.org/10.1002/SMLL.201102635

    Article  CAS  PubMed  Google Scholar 

  110. Li J, Xiao D, Ren Y et al (2019) Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials. Electrochim Acta 300:193–201. https://doi.org/10.1016/J.ELECTACTA.2019.01.089

    Article  CAS  Google Scholar 

  111. Lei Z, Zhang J, Li Zhang L et al (2016) Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ Sci 9:1891–1930. https://doi.org/10.1039/C6EE00158K

    Article  CAS  Google Scholar 

  112. Yoruk O, Bayrak Y, Ates M (2021) Design and assembly of supercapacitor based on reduced graphene oxide/TiO2/polyaniline ternary nanocomposite and its application in electrical circuit. Polym Bull. 79:2969–2993. https://doi.org/10.1007/S00289-021-03649-2

  113. Khan ZU, Kausar A, Ullah H et al (2016) A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: properties and fabrication techniques. J Plast Film Sheet 32(4):336–379. https://doi.org/10.1177/8756087915614612

    Article  CAS  Google Scholar 

  114. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330. https://doi.org/10.1126/SCIENCE.1216744

    Article  CAS  PubMed  Google Scholar 

  115. Zhao Y, Li X, Yan B et al (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sour 274:869–884. https://doi.org/10.1016/J.JPOWSOUR.2014.10.008

    Article  CAS  Google Scholar 

  116. Sadak O, Prathap MUA, Gunasekaran S (2019) Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon 144:756–763. https://doi.org/10.1016/J.CARBON.2018.12.062

    Article  CAS  Google Scholar 

  117. Li J, Xie H, Li Y et al (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sour 196:10775–10781. https://doi.org/10.1016/J.JPOWSOUR.2011.08.105

    Article  CAS  Google Scholar 

  118. Zhang L, Huang D, Hu N et al (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sour 342:1–8. https://doi.org/10.1016/J.JPOWSOUR.2016.11.068

    Article  CAS  Google Scholar 

  119. Liu H, Wang Y, Gou X et al (2013) Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater Sci Eng, B 178:293–298. https://doi.org/10.1016/J.MSEB.2012.12.002

    Article  CAS  Google Scholar 

  120. Usman M, Pan L, Asif M et al (2016) Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO. Appl Surf Sci 370:297–305. https://doi.org/10.1016/J.APSUSC.2016.02.175

    Article  CAS  Google Scholar 

  121. Xu J, Wang K, Zu SZ et al (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026. https://doi.org/10.1021/NN1006539/SUPPL_FILE/NN1006539_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  122. Hu L, Tu J, Jiao S et al (2012) In situ electrochemical polymerization of a nanorod-PANI– Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys Chem Chem Phys 14:15652–15656. https://doi.org/10.1039/C2CP42192E

    Article  CAS  PubMed  Google Scholar 

  123. Li K, Liu J, Huang Y et al (2017) Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J Mater Chem A Mater 5:5466–5474. https://doi.org/10.1039/C6TA11224B

    Article  CAS  Google Scholar 

  124. Gul H, Shah AUHA, Krewer U, Bilal S (2020) Study on direct synthesis of energy efficient multifunctional polyaniline–graphene oxide nanocomposite and its application in aqueous symmetric supercapacitor devices. Nanomaterials. https://doi.org/10.3390/NANO10010118

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rose A, Guru Prasad K, Sakthivel T et al (2018) Electrochemical analysis of Graphene Oxide/Polyaniline/Polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl Surf Sci 449:551–557. https://doi.org/10.1016/J.APSUSC.2018.02.224

    Article  CAS  Google Scholar 

  126. Bhadra J, Al-Thani NJ, Madi NK, Al-Maadeed MA (2017) Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends. Arab J Chem 10:664–672. https://doi.org/10.1016/J.ARABJC.2015.04.017

    Article  CAS  Google Scholar 

  127. Cheng X, Kumar V, Yokozeki T et al (2016) Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Compos Part A Appl Sci Manuf 82:100–107. https://doi.org/10.1016/J.COMPOSITESA.2015.12.006

    Article  CAS  Google Scholar 

  128. Tabrizi AG, Arsalani N, Mohammadi A et al (2018) A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors. Electrochim Acta 265:379–390. https://doi.org/10.1016/J.ELECTACTA.2018.01.166

    Article  CAS  Google Scholar 

  129. Razaq A, Bibi F, Zheng X, et al (2022) Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials. 15:1012. https://doi.org/10.3390/MA15031012

  130. Wu J, Zhang Q, Wang J et al (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 11:1280–1286. https://doi.org/10.1039/C8EE00078F

    Article  CAS  Google Scholar 

  131. Liu X, Shang P, Zhang Y et al (2014) Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. J Mater Chem A Mater 2:15273–15278. https://doi.org/10.1039/C4TA03077J

    Article  CAS  Google Scholar 

  132. Viswanathan A, Shetty AN (2017) Facile in-situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application. Electrochim Acta 257:483–493. https://doi.org/10.1016/J.ELECTACTA.2017.10.099

    Article  CAS  Google Scholar 

  133. Chen N, Ren Y, Kong P et al (2017) In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl Surf Sci 392:71–79. https://doi.org/10.1016/J.APSUSC.2016.07.168

    Article  CAS  Google Scholar 

  134. Gandara M, Gonçalves ES (2020) Polyaniline supercapacitor electrode and carbon fiber graphene oxide: electroactive properties at the charging limit. Electrochim Acta 345:136197. https://doi.org/10.1016/J.ELECTACTA.2020.136197

    Article  CAS  Google Scholar 

  135. Albdiry M, Al-Nayili A (2022) Ternary sulfonated graphene/polyaniline/carbon nanotubes nanocomposites for high performance of supercapacitor electrodes. Polym Bull. https://doi.org/10.1007/S00289-022-04495-6/FIGURES/7

    Article  Google Scholar 

  136. Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586. https://doi.org/10.1016/J.ELECTACTA.2017.05.152

    Article  CAS  Google Scholar 

  137. Ajdari FB, Kowsari E, Ehsani A (2018) Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. J Solid State Chem 265:155–166. https://doi.org/10.1016/J.JSSC.2018.05.038

    Article  CAS  Google Scholar 

  138. Kaushik BK, Majumder MK (2015) Carbon nanotube: properties and applications. Springer Briefs Appl Sci Technol. https://doi.org/10.1007/978-81-322-2047-3_2

    Article  Google Scholar 

  139. Yazdi MK, Saeidi H, Zarrintaj P et al (2019) PANI-CNT nanocomposites. Fund Emerg Appl Polyaniline. https://doi.org/10.1016/B978-0-12-817915-4.00009-9

    Article  Google Scholar 

  140. Zhang H, Cao G, Wang W et al (2009) Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim Acta 54:1153–1159. https://doi.org/10.1016/J.ELECTACTA.2008.09.004

    Article  CAS  Google Scholar 

  141. Yoon SB, Yoon EH, Kim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sour 196:10791–10797. https://doi.org/10.1016/J.JPOWSOUR.2011.08.107

    Article  CAS  Google Scholar 

  142. Khodadadi Yazdi M, Hashemi Motlagh G, Saeedi Garakani S, Boroomand A (2018) Effects of multiwall carbon nanotubes on the polymerization model of aniline. J Polym Res 25:1–15. https://doi.org/10.1007/S10965-018-1655-7/FIGURES/17

    Article  CAS  Google Scholar 

  143. Oueiny C, Berlioz S, Perrin FX (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707–748. https://doi.org/10.1016/J.PROGPOLYMSCI.2013.08.009

    Article  CAS  Google Scholar 

  144. Wu M, Snook GA, Gupta V et al (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303. https://doi.org/10.1039/B418835G

    Article  CAS  Google Scholar 

  145. Huang JE, Li XH, Xu JC, Li HL (2003) Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon N Y 41:2731–2736. https://doi.org/10.1016/S0008-6223(03)00359-2

    Article  CAS  Google Scholar 

  146. Srivastava S, Sharma SS, Agrawal S et al (2010) Study of chemiresistor type CNT doped polyaniline gas sensor. Synth Met 160:529–534. https://doi.org/10.1016/J.SYNTHMET.2009.11.022

    Article  CAS  Google Scholar 

  147. Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52:1721–1726. https://doi.org/10.1016/J.ELECTACTA.2006.01.074

    Article  CAS  Google Scholar 

  148. Yan J, Wei T, Fan Z et al (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sour 195:3041–3045. https://doi.org/10.1016/J.JPOWSOUR.2009.11.028

    Article  CAS  Google Scholar 

  149. Zhang Q, Wang W, Li J et al (2013) Preparation and thermoelectric properties of multi-walled carbon nanotube /polyaniline hybrid nanocomposites. J Mater Chem A Mater 1:12109–12114. https://doi.org/10.1039/C3TA12353G

    Article  CAS  Google Scholar 

  150. Simotwo SK, Delre C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces 8:21261–21269. https://doi.org/10.1021/ACSAMI.6B03463/SUPPL_FILE/AM6B03463_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  151. Wu G, Tan P, Wang D et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite Electrodes. Sci Rep 7:1–8. https://doi.org/10.1038/srep43676

    Article  Google Scholar 

  152. Tian Y, Amal R, Wang DW (2016) An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front Energy Res 4:34. https://doi.org/10.3389/FENRG.2016.00034/BIBTEX

    Article  Google Scholar 

  153. Li X, Li Y, Xie S et al (2022) Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J 427:131799. https://doi.org/10.1016/J.CEJ.2021.131799

    Article  CAS  Google Scholar 

  154. Jin L, Jiang Y, Zhang M et al (2018) Oriented polyaniline nanowire arrays grown on dendrimer (PAMAM) functionalized multiwalled carbon nanotubes as supercapacitor electrode materials. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-24265-7

    Article  CAS  Google Scholar 

  155. Xu J, Ding J, Zhou X et al (2017) Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J Power Sour 340:302–308. https://doi.org/10.1016/J.JPOWSOUR.2016.11.085

    Article  CAS  Google Scholar 

  156. Choudhary N, Li C, Moore J et al (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336. https://doi.org/10.1002/ADMA.201605336

    Article  Google Scholar 

  157. Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  158. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide -based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. https://doi.org/10.1039/C0CS00127A

    Article  CAS  PubMed  Google Scholar 

  159. Huang X, Qi X, Boey F, Zhang H (2012) Graphene -based composites. Chem Soc Rev 41:666–686. https://doi.org/10.1039/C1CS15078B

    Article  CAS  PubMed  Google Scholar 

  160. Xie Y, Song F, Xia C, Du H (2014) Preparation of carbon-coated lithium iron phosphate/titanium nitride for a lithium-ion supercapacitor. New J Chem 39:604–613. https://doi.org/10.1039/C4NJ01169D

    Article  CAS  Google Scholar 

  161. Xia C, Xie Y, Wang Y et al (2013) Preparation and capacitance performance of polyaniline/titanium nitride nanotube hybrid. J Appl Electrochem 43:1225–1233. https://doi.org/10.1007/S10800-013-0610-X/TABLES/2

    Article  CAS  Google Scholar 

  162. Peng X, Huo K, Fu J et al (2013) Coaxial PANI/TiN/PANI nanotube arrays for high-performance supercapacitor electrodes. Chem Commun 49:10172–10174. https://doi.org/10.1039/C3CC45997G

    Article  CAS  Google Scholar 

  163. Xia C, Xie Y, Du H, Wang W (2015) Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J Nanopart Res 17:1–12. https://doi.org/10.1007/S11051-014-2855-7/TABLES/2

    Article  CAS  Google Scholar 

  164. Xie Y, Wang D (2016) Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J Alloys Compd 665:323–332. https://doi.org/10.1016/J.JALLCOM.2016.01.089

    Article  CAS  Google Scholar 

  165. Lu L, Xie Y (2016) Fabrication and supercapacitor behavior of phosphomolybdic acid/polyaniline/titanium nitride core–shell nanowire array. New J Chem 41:335–346. https://doi.org/10.1039/C6NJ02368A

    Article  CAS  Google Scholar 

  166. Sun J, Wu C, Sun X et al (2017) Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J Mater Chem A Mater 5:9443–9464. https://doi.org/10.1039/C7TA00932A

    Article  CAS  Google Scholar 

  167. Idumah CI (2021) Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth Met 273:116674. https://doi.org/10.1016/J.SYNTHMET.2020.116674

    Article  CAS  Google Scholar 

  168. Kale G, Arbuj S, Chothe U et al (2020) Highly crystalline ordered Cu-doped TiO2 nanostructure by paper templated method: hydrogen production and dye degradation under natural sunlight. J Compos Sci 4:48. https://doi.org/10.3390/JCS4020048

    Article  CAS  Google Scholar 

  169. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939. https://doi.org/10.1002/ANIE.201001374

    Article  CAS  Google Scholar 

  170. Xie K, Li J, Lai Y et al (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3:2202–2207. https://doi.org/10.1039/C0NR00899K

    Article  CAS  PubMed  Google Scholar 

  171. Chen J, Xia Z, Li H et al (2015) Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition. Electrochim Acta 166:174–182. https://doi.org/10.1016/J.ELECTACTA.2015.03.058

    Article  CAS  Google Scholar 

  172. Poudel MB, Yu C, Kim HJ (2020) Synthesis of conducting bifunctional Polyaniline@Mn-TiO2 nanocomposites for supercapacitor electrode and visible light driven photocatalysis. Catalysts 10:546. https://doi.org/10.3390/CATAL10050546

    Article  CAS  Google Scholar 

  173. Wang Q, Wang J, Wang H et al (2019) TiO2-C nanowire arrays@polyaniline core-shell nanostructures on carbon cloth for high performance supercapacitors. Appl Surf Sci 493:1125–1133. https://doi.org/10.1016/J.APSUSC.2019.07.102

    Article  CAS  Google Scholar 

  174. Ren X, Fan H, Ma J et al (2018) Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors. Appl Surf Sci 441:194–203. https://doi.org/10.1016/J.APSUSC.2018.02.013

    Article  CAS  Google Scholar 

  175. Zeng R, Li Z, Li L et al (2019) Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustain Chem Eng 7:11540–11549. https://doi.org/10.1021/ACSSUSCHEMENG.9B01442/ASSET/IMAGES/LARGE/SC-2019-01442U_0005.JPEG

    Article  CAS  Google Scholar 

  176. Wang L, Chen L, Yan B et al (2014) In situ preparation of SnO 2 @polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J Mater Chem A Mater 2:8334–8341. https://doi.org/10.1039/C3TA15266A

    Article  CAS  Google Scholar 

  177. Luo Z, Zhu Y, Liu E et al (2014) Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance. Mater Res Bull 60:105–110. https://doi.org/10.1016/J.MATERRESBULL.2014.08.022

    Article  CAS  Google Scholar 

  178. Wang Q, Zong Q, Zhang C et al (2018) Network structure of SnO2 hollow sphere/PANI nanocomposites for electrochemical performance. Dalton Trans 47:2368–2375. https://doi.org/10.1039/C8DT00056E

    Article  CAS  PubMed  Google Scholar 

  179. Solís-Méndez LS, Baas-López JM, Pacheco-Catalán DE, Uribe-Calderon JA (2021) Effect of polyaniline content on the electrochemical behavior of tin oxide/polyaniline composites by solution mixing. J Mater Sci: Mater Electron 32:299–312. https://doi.org/10.1007/S10854-020-04781-X/TABLES/2

    Article  Google Scholar 

  180. Parra-Elizondo V, Escobar-Morales B, Morales E, Pacheco-Catalán D (2017) Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor. J Solid State Electrochem 21:975–985. https://doi.org/10.1007/S10008-016-3439-5/TABLES/1

    Article  CAS  Google Scholar 

  181. Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci: Mater Int 23:245–255. https://doi.org/10.1016/J.PNSC.2013.04.001

    Article  CAS  Google Scholar 

  182. Xie Y, Zhu F (2017) Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J Solid State Electrochem 21:1675–1685. https://doi.org/10.1007/S10008-017-3525-3

    Article  CAS  Google Scholar 

  183. Shen X, Ma L, Gan M et al (2014) Chemical anchoring of aminobenzoate onto the surface of SnO2 nanoparticles for synthesis of polyaniline/SnO2 composite. Synth Met 196:20–26. https://doi.org/10.1016/J.SYNTHMET.2014.07.009

    Article  CAS  Google Scholar 

  184. Mondal S, Rana U, Malik S (2017) Reduced graphene Oxide/Fe3O4/Polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121:7573–7583. https://doi.org/10.1021/ACS.JPCC.6B10978/SUPPL_FILE/JP6B10978_SI_002.AVI

    Article  CAS  Google Scholar 

  185. Das AK, Karan SK, Khatua BB (2015) High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta 180:1–15. https://doi.org/10.1016/J.ELECTACTA.2015.08.029

    Article  CAS  Google Scholar 

  186. Yan Y, Cheng Q, Pavlinek V et al (2012) Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors. Electrochim Acta 71:27–32. https://doi.org/10.1016/J.ELECTACTA.2012.03.101

    Article  CAS  Google Scholar 

  187. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sour 286:561–570. https://doi.org/10.1016/J.JPOWSOUR.2015.04.025

    Article  CAS  Google Scholar 

  188. Xu Z, Zhang Z, Gao L et al (2018) Tin disulphide/nitrogen-doped reduced graphene oxide/polyaniline ternary nanocomposites with ultra-high capacitance properties for high rate performance supercapacitor. RSC Adv 8:40252–40260. https://doi.org/10.1039/C8RA08877B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yesappa L, Niranjana M, Ashokkumar S et al (2018) Characterization, electrical conductivity and electrochemical performance of polyaniline-LiClO4-CuO Nano Composite for Energy Storage Applications. Polym-Plast Technol Mater 58:193–205. https://doi.org/10.1080/03602559.2018.1466175

    Article  CAS  Google Scholar 

  190. Rajaguru DSK, Vidanapathirana KP, Perera KS (2021) Conducting Polymer /Graphene composite electrodes for supercapacitors. Sri Lankan J Phys 22:50. https://doi.org/10.4038/SLJP.V22I1.8078

    Article  Google Scholar 

  191. Choi YK, Kim HJ, Kim SR et al (2017) Enhanced thermal stability of polyaniline with polymerizable dopants. Macromolecules 50:3164–3170. https://doi.org/10.1021/ACS.MACROMOL.6B02586/ASSET/IMAGES/LARGE/MA-2016-02586S_0007.JPEG

    Article  CAS  Google Scholar 

  192. Hattab Y, Benharrats N (2019) Electrical and thermal properties of PANI–MMT nanocomposites in strongly acidic aqueous media. SN Appl Sci 1:1–14. https://doi.org/10.1007/S42452-019-0703-1/FIGURES/18

    Article  CAS  Google Scholar 

  193. Inamdar AI, Chavan HS, Kim H, Im H (2019) Mesoporous Ni-PANI composite electrode for electrochromic energy storage applications. Solar Energy Mater Solar Cells 201:110121. https://doi.org/10.1016/J.SOLMAT.2019.110121

    Article  CAS  Google Scholar 

  194. Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J Power Sour 245:937–946. https://doi.org/10.1016/J.JPOWSOUR.2013.07.064

    Article  CAS  Google Scholar 

  195. Wang WD, Lin XQ, Zhao HB, Lü QF (2016) Nitrogen-doped graphene prepared by pyrolysis of graphene oxide/polyaniline composites as supercapacitor electrodes. J Anal Appl Pyrolysis 120:27–36. https://doi.org/10.1016/J.JAAP.2016.04.006

    Article  CAS  Google Scholar 

  196. Zhang T, Yue H, Gao X et al (2020) High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans 49:3304–3311. https://doi.org/10.1039/D0DT00100G

    Article  CAS  PubMed  Google Scholar 

  197. Wang DW, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752. https://doi.org/10.1021/NN900297M/ASSET/IMAGES/LARGE/NN-2009-00297M_0009.JPEG

    Article  CAS  PubMed  Google Scholar 

  198. Hao M, Chen Y, Xiong W et al (2016) In situ synthesis of crosslinked-polyaniline nano-pillar arrays/reduced graphene oxide nanocomposites for supercapacitors. J Solid State Electrochem 20:665–671. https://doi.org/10.1007/S10008-015-3080-8/FIGURES/7

    Article  CAS  Google Scholar 

  199. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401. https://doi.org/10.1021/CM902876U/SUPPL_FILE/CM902876U_SI_001.PDF

    Article  CAS  Google Scholar 

  200. Hong X, Zhang B, Murphy E et al (2017) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J Power Sour 343:60–66. https://doi.org/10.1016/J.JPOWSOUR.2017.01.034

    Article  CAS  Google Scholar 

  201. Li J, Ren Y, Ren Z et al (2015) Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. J Mater Chem A Mater 3:23307–23315. https://doi.org/10.1039/C5TA05381A

    Article  CAS  Google Scholar 

  202. An H, Wang Y, Wang X et al (2010) The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance. J Solid State Electrochem 14:651–657. https://doi.org/10.1007/S10008-009-0835-0

    Article  CAS  Google Scholar 

  203. Fan H, Wang H, Zhao N et al (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22:2774–2780. https://doi.org/10.1039/C1JM14311E

    Article  CAS  Google Scholar 

  204. Wang C, Yang Y, Li R et al (2020) Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chem Commun 56:4003–4006. https://doi.org/10.1039/D0CC01028F

    Article  CAS  Google Scholar 

  205. Bavio MA, Acosta GG, Kessler T, Visintin A (2017) Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline - carbon nanotubes. Energy 130:22–28. https://doi.org/10.1016/J.ENERGY.2017.04.135

    Article  CAS  Google Scholar 

  206. Du J, Li Y, Zhong Q et al (2020) Boosting the utilization and electrochemical performances of polyaniline by forming a binder-free nanoscale coaxially coated polyaniline/carbon nanotube/carbon fiber paper hierarchical 3D microstructure composite as a supercapacitor electrode. ACS Omega 5:22119–22130. https://doi.org/10.1021/acsomega.0c02151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xinming W, Qiguan W, Wenzhi Z et al (2016) Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromo-supercapacitor. J Mater Sci 51:7731–7741. https://doi.org/10.1007/S10853-016-0055-9/FIGURES/8

    Article  Google Scholar 

  208. Bilal S, Fahim M, Firdous I, Ali Shah A, ul H, (2018) Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder. Appl Surf Sci 435:91–101. https://doi.org/10.1016/J.APSUSC.2017.11.030

    Article  CAS  Google Scholar 

  209. Malik R, Zhang L, McConnell C et al (2017) Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon N Y 116:579–590. https://doi.org/10.1016/J.CARBON.2017.02.036

    Article  CAS  Google Scholar 

  210. Yasoda KY, Kumar S, Kumar MS et al (2021) Fabrication of MnS/GO/PANI nanocomposites on a highly conducting graphite electrode for supercapacitor application. Mater Today Chem. https://doi.org/10.1016/J.MTCHEM.2020.100394

    Article  Google Scholar 

  211. Ben J, Song Z, Liu X et al (2020) Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors. Nanoscale Res Lett. https://doi.org/10.1186/S11671-020-03379-W

    Article  PubMed  PubMed Central  Google Scholar 

  212. Atram RR, Bhuse VM, Atram RG et al (2021) Novel carbon nanofibers/thionickel ferrite/polyaniline (CNF/NiFe2S4/PANI) ternary nanocomposite for high performance supercapacitor. Mater Chem Phys 262:124253. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124253

    Article  CAS  Google Scholar 

  213. Jiang F, Li W, Zou R et al (2014) MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 7:72–79. https://doi.org/10.1016/J.NANOEN.2014.04.007

    Article  CAS  Google Scholar 

  214. Ma Y, Hou C, Zhang H et al (2019) Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim Acta 315:114–123. https://doi.org/10.1016/J.ELECTACTA.2019.05.073

    Article  CAS  Google Scholar 

  215. Zhang C, Peng C, Gao B et al (2015) Fabrication of PANI/C-TiO2 composite nanotube arrays electrode for supercapacitor. J Nanomater 16:121. https://doi.org/10.1155/2015/140596

    Article  CAS  Google Scholar 

  216. Wei Y, Luo W, Li X et al (2022) PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta. https://doi.org/10.1016/J.ELECTACTA.2022.139874

    Article  Google Scholar 

  217. Xia X, Hao Q, Lei W et al (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22:8314–8320. https://doi.org/10.1039/C2JM16216D

    Article  CAS  Google Scholar 

  218. Sadeghinia M, Shayeh JS, Fatemi F et al (2019) Electrochemical study of perlite-barium ferrite/conductive polymer nano composite for super capacitor applications. Int J Hydrog Energy 44:28088–28095. https://doi.org/10.1016/J.IJHYDENE.2019.09.085

    Article  CAS  Google Scholar 

  219. Liu X, Wang J, Yang G (2018) In Situ growth of the Ni3V2O8@PANI composite electrode for flexible and transparent symmetric supercapacitors. ACS Appl Mater Interfaces 10:20688–20695. https://doi.org/10.1021/ACSAMI.8B04609/SUPPL_FILE/AM8B04609_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  220. Barik R, Barik G, Tanwar V, Ingole PP (2022) Supercapacitor performance and charge storage mechanism of brannerite type CuV2O6/PANI nanocomposites synthesis with their theoretical aspects. Electrochim Acta 410:140015. https://doi.org/10.1016/J.ELECTACTA.2022.140015

  221. Sun PP, Zhang YH, Shi H, Shi FN (2022) Controllable one step electrochemical synthesis of PANI encapsulating 3d–4f bimetal MOFs heterostructures as electrode materials for high-performance supercapacitors. Chem Eng J 427:130836. https://doi.org/10.1016/J.CEJ.2021.130836

    Article  CAS  Google Scholar 

  222. Das T, Verma B (2019) Polyaniline based ternary composite with enhanced electrochemical properties and its use as supercapacitor electrodes. J Energy Stor 26:100975. https://doi.org/10.1016/J.EST.2019.100975

    Article  Google Scholar 

  223. Atram RR, Bhuse VM, Atram RG et al (2021) Novel carbon nanofibers/thionickel ferrite/polyaniline (CNF/NiFe2S4/PANI) ternary nanocomposite for high performance supercapacitor. Mater Chem Phys. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124253

    Article  Google Scholar 

  224. Sahoo S, Zhang S, Shim JJ (2016) Porous ternary high performance supercapacitor electrode based on reduced graphene oxide, NiMn2O4, and polyaniline. Electrochim Acta 216:386–396. https://doi.org/10.1016/J.ELECTACTA.2016.09.030

    Article  CAS  Google Scholar 

  225. Wang W, Hao Q, Lei W et al (2014) Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. J Power Sour 269:250–259. https://doi.org/10.1016/J.JPOWSOUR.2014.07.010

    Article  CAS  Google Scholar 

  226. Ghasemi AK, Ghorbani M, Lashkenari MS, Nasiri N (2022) Controllable synthesis of zinc ferrite nanostructure with tunable morphology on polyaniline nanocomposite for supercapacitor application. J Energy Stor 51:104579. https://doi.org/10.1016/J.EST.2022.104579

    Article  Google Scholar 

  227. Alsulami QA, Alharbi LM, Keshk MAS, S, et al (2022) Synthesis of a graphene oxide/ZnFe2O4/polyaniline nanocomposite and its structural and electrochemical characterization for supercapacitor application. Int J Energy Res 46:2438–2445. https://doi.org/10.1002/ER.7318

    Article  CAS  Google Scholar 

  228. Deyab MA, Mele G (2019) PANI@Co-Porphyrins composite for the construction of supercapacitors. J Energy Stor 26:101013. https://doi.org/10.1016/J.EST.2019.101013

    Article  Google Scholar 

  229. Krishnaiah P, Prasanna BP, Yogesh Kumar K et al (2020) Fabrication of anode material for asymmetric supercapacitor device using polyaniline wrapped boroncarbonitride nanocomposite with enhanced capacitance. J Alloys Compd. https://doi.org/10.1016/J.JALLCOM.2020.156602

    Article  Google Scholar 

  230. Sai Y, Sarma S, Gupta N, Bhattacharya P (2022) A composite electrode of 2D-Ti3C2 (MXene) and polyemeraldine salt of polyaniline for supercapacitor with high areal capacitance. Polym Eng Sci. https://doi.org/10.1002/PEN.25975

    Article  Google Scholar 

  231. Iqbal MZ, Faisal MM, Ali SR et al (2020) Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim Acta. https://doi.org/10.1016/J.ELECTACTA.2020.136039

    Article  Google Scholar 

  232. Li L, Zhang Y, Lu H et al (2020) (2020) Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-019-13959-9

    Article  CAS  Google Scholar 

  233. Nayak S, Kittur A, Nayak S (2022) Nickel phosphide-polyaniline binary composite as electrode material using chitosan biopolymer electrode binder for supercapattery applications. Mater Today Proc 54:912–922. https://doi.org/10.1016/J.MATPR.2021.11.221

    Article  CAS  Google Scholar 

  234. Yao H, Li Q, Zhang M et al (2020) Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4− to PANI via a simple and scalable synthetic method. Chem Eng J 392:123653. https://doi.org/10.1016/J.CEJ.2019.123653

    Article  CAS  Google Scholar 

  235. Cao X, Zeng HY, Xu S et al (2019) Facile fabrication of the polyaniline/layered double hydroxide nanosheet composite for supercapacitors. Appl Clay Sci 168:175–183. https://doi.org/10.1016/J.CLAY.2018.11.011

    Article  CAS  Google Scholar 

  236. Shi HY, Ye YJ, Liu K et al (2018) A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc Batteries. Angew Chem Int Ed Engl 57:16359–16363. https://doi.org/10.1002/ANIE.201808886

    Article  CAS  PubMed  Google Scholar 

  237. Bounedjar M, Mekki A, Naar N, Alayat M (2021) Studies of mechanical, electrical and electromagnetic properties of polyester/PANI conductive fabric composites based on different type of stabilizers. Polym Bull 79:9609–9628. https://doi.org/10.1007/S00289-021-03965-7/TABLES/4

    Article  Google Scholar 

  238. Bhadra J, Alkareem A, Al-Thani N (2020) A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J Polym Res 27:1–20. https://doi.org/10.1007/S10965-020-02052-1

    Article  Google Scholar 

  239. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067. https://doi.org/10.1021/JP9113255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tshwane University of Technology (TUT), South Africa, for their financial support in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okechukwu Benjamin Okafor.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okafor, O.B., Popoola, A.P.I., Popoola, O.M. et al. Review of advances in improving thermal, mechanical and electrochemical properties of polyaniline composite for supercapacitor application. Polym. Bull. 81, 189–246 (2024). https://doi.org/10.1007/s00289-023-04710-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04710-y

Keywords

Navigation