Skip to main content
Log in

Nano TiO2-doped sodium alginate/hydroxypropyl methylcellulose synthesis of bionanocomposite membrane and its use in controlled release of anti-cancer drug 5-fluorouracil

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Today, the disease treatment aims to increase the patient's quality of life, reduce the dose of drugs used, extend the dosing interval, and purify the patient from the side and harmful effects. Controlled drug release systems are the systems that respond best in this respect. In this study, the evaluation of the in vitro release of 5-fluorouracil for the transdermal delivery system of NaAlg/HPMC/TiO2 biocompatible membranes was investigated. The nanocomposite membrane was prepared by adding TiO2 nanoparticles to a mixture of sodium alginate and hydroxypropyl methylcellulose polymers. Membranes were analyzed by Fourier Transform Infrared, Scanning Electron Microscopy, Differential Scanning Calorimetry, X-Ray Diffraction, and Thermogravimetric analyses. In addition, water contact angles and mechanical tests of the membranes were carried out. The degree of swelling of the prepared membranes was examined; the highest swelling degree was obtained as 304.9% in pH 5.0 buffer. The effects of crosslinking time, nanoparticle amount, and temperature were investigated in the release studies of 5-FU. The highest drug release was found to be 65.3% at the end of 24 h in membranes containing 5% TiO2 and crosslinked for 1 h. The release kinetics of 5-FU were evaluated according to four kinetic models, and the release from NaAlg/HPMC/TiO2 membranes showed conformity with the Korsmeyer–Pappes model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript.

References

  1. Sanson AL, Silva SCR, Martins MCG, Giusti-Paiva A, Maia PP, Martins I (2015) Liquid-liquid extraction combined with high-performance liquid chromatography diode array-ultra-violet for simultaneous determination of antineoplastic drugs in plasma. Braz J Pharm Sci 47:363–371

    Article  Google Scholar 

  2. Longley D, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  PubMed  Google Scholar 

  3. Saif MW, Choma A, Salamone SJ, Chu E (2009) Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst 101:1543–1552

    Article  CAS  PubMed  Google Scholar 

  4. Sweetman S (2005) Martindale: the complete drug reference. 34th ed. The Pharmaceutical Press. Electronic version, London

  5. Ritthidej GC, Leesajakul W (1996) Chitosan as rate-controlling membrane in isosorbide dinitrate transdermal patch. In: Proceeding of the 23rd international symposium on controlled release bioactive materials, Kyoto, Japan, pp 202–203

  6. Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584

    Article  CAS  PubMed  Google Scholar 

  7. Don TM, Huang ML, Chiu AC, Kuo KH, Chiu WY, Chiu LH (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107:266–273

    Article  CAS  Google Scholar 

  8. Ding P, Huang KL, Li GY, Liu YF (2007) Preparation and properties of modified chitosan as potential matrix materials for drug sustained-release beads. Int J Biol Macromol 41:125–131

    Article  CAS  PubMed  Google Scholar 

  9. Seal L, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng 34:147–230

    Article  Google Scholar 

  10. Rasmussen MR, Snabe T, Pedersen LH (2003) Numerical modelling of insulin and amyloglucosidase release from swelling Ca-alginate beads. J Control Release 91:395–405

    Article  CAS  PubMed  Google Scholar 

  11. Reyes N, Rivas-Ruiz I, Domínguez-Espinosa R, Solís S (2006) Influence of immobilization parameters on endopolygalacturonase productivity by hybrid Aspergillus sp. HL entrapped in calcium alginate. Biochem Eng J 32:43–48

    Article  CAS  Google Scholar 

  12. Marani PL, Bloisi GD, Petri DFS (2015) Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine. Cellulose 22:3907–3918

    Article  CAS  Google Scholar 

  13. Zhang L, Zhao Y, Qian JY (2017) Relationship between multi-scale structures and properties of photophobic films based on hydroxypropyl methylcellulose and monosodium phosphate. Carbohydr Polym 174:572–579

    Article  CAS  PubMed  Google Scholar 

  14. Siddaramaiah, Mruthyunjaya Swamy TM (2007) Studies on miscibility of sodium alginate/polyethylene glycol blends. J Macromol Sci Pure Appl Chem A44(3):321–327

    Article  Google Scholar 

  15. Kalyani S, Smitha B, Sridhar S, Krishnaiah A (2006) Blend membranes of sodium alginate and hydroxyethylcellulose for pervaporation-based enrichment of t-butyl alcohol. Carbohydr Polym 64:425–432

    Article  CAS  Google Scholar 

  16. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S (2019) Synthesis and characterization of interpenetrating polymeric networks-based bio-composite alginate film: a well-designed drug delivery platform. Int J Biol Macromol 130:645–654

    Article  CAS  PubMed  Google Scholar 

  17. Nagarwal RC, Kumar R, Pandit JK (2012) Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47:678–685

    Article  CAS  PubMed  Google Scholar 

  18. Olad ALI, Behboudi S, Entezami A (2012) Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull Mater Sci 35:801–809

    Article  CAS  Google Scholar 

  19. Mano SS, Kanehira K, Sonezaki S, Taniguchi A (2012) Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int J Mol Sci 13:3703–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloid Surf B 113:223–229

    Article  CAS  Google Scholar 

  21. Hasanin MS, El-Sakhawy M, Ahmed HY, Kamel S (2021) Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5-fluorouracil. Biotechnol J 17:2100183

    Article  Google Scholar 

  22. Reddy LCN, Reddy RSP, Rao KKSV, Subha MCS, Rao CK (2013) Development of polymeric blend microspheres from chitosan-hydroxypropylmethyl, cellulose for controlled release of an anti-cancer drug. J Korean Chem Soc 57:439–446

    Article  CAS  Google Scholar 

  23. Ma Y, Thurecht KJ, Coombes AGA (2021) Development of enteric-coated, biphasic chitosan/HPMC microcapsules for colon-targeted delivery of anticancer drug-loaded nanoparticles. Int J Pharm 607:121026

    Article  CAS  PubMed  Google Scholar 

  24. Yusefi M, Lee-Kiun MS, Shameli K, Teow SY, Ali RR, Siew KK, Chan HY, Wong MMT, Lim WL, Kuča K (2021) 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydr Polym 273:118523

    Article  CAS  PubMed  Google Scholar 

  25. Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM (2016) Polymeric nanoparticles for oral delivery of 5-fluorouracil: formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci 84:83–91

    Article  PubMed  Google Scholar 

  26. Jeong WY, Kwon M, Choi HE, Kim KS (2021) Recent advances in transdermal drug delivery systems: a review. Biomater Res 25:1–15

    Article  Google Scholar 

  27. Mehnath S, Chitra K, Karthikeyan K, Jeyaraj M (2020) Localized delivery of active targeting micelles from nanofibers patch for effective breast cancer therapy. Int J Pharm 584:119412

    Article  CAS  PubMed  Google Scholar 

  28. Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK (2017) Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: in vitro and ex vivo studies. J Control Release 253:122–136

    Article  CAS  PubMed  Google Scholar 

  29. Yang B, Dong Y, Shen Y, Hou A, Quan G, Pan X, Wu C (2021) Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater 6:2400–2411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Simon A, Amaro MI, Healy AM, Cabral LM, Sousa VP (2016) Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int J Pharm 512:234–241

    Article  CAS  PubMed  Google Scholar 

  31. Taşkın Çakıcı G (2021) Preparation and characterization of biocompatible membranes based on TiO2 nanoparticul. Sak Univ J Sci 25(6):1376–1385

    Google Scholar 

  32. Sanlı O, Orhan E, Asman G (2006) Release of salicylic acid through poly (vinyl alcohol)/poly (vinyl pyrrolidone) and poly (vinyl alcohol-g-n-vinyl2-pyrrolidone) membranes. J Appl Polym Sci 102:1244–1253

    Article  Google Scholar 

  33. Chalitangkoon J, Wongkittisin M, Monvisa P (2020) Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int J Biol Macromol 159:194–203

    Article  CAS  PubMed  Google Scholar 

  34. Tabanlıgil Calam T, Taşkın Çakıcı G (2022) Optimization of square wave voltammetry parameters by response surface methodology for the determination of Sunset yellow using an electrochemical sensor based on Purpald®. Food Chem 1234

  35. Lin YK, Nguyen VH, Yu JCC, Lee CW, Deng YH, Wu JCS, Chen CL (2017) Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. J Taiwan Inst Chem Eng 79:23–30

    Article  CAS  Google Scholar 

  36. Zhao KY, Feng LZ, Li ZH, Fu YF, Zhang XX, Wei JF, Wei SX (2014) Preparation, characterization and photocatalytic degradation properties of TiO2/calcium alginate composite film and the recovery of TiO2 nanoparticle. RSC Adv 4:51321–51329

    Article  CAS  Google Scholar 

  37. Luo YB, Li WD, Wang XL, Xu DY, Wang YZ (2009) Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized TiO2. Acta Mater 57:3182–3191

    Article  CAS  Google Scholar 

  38. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848

    Article  CAS  Google Scholar 

  39. Boutris C, Chatzi E, Kiparissides C (1997) Characterization of the LCST behaviour of aqueous poly (N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer 38:2567–2570

    Article  CAS  Google Scholar 

  40. Wang L, Ding Y (2015) Creating micro-structured hydrogel-forming polymer films by photopolymerization in an evaporating solvent: compositional and morphological evolutions. Eur Polym J 66:99–107

    Article  CAS  Google Scholar 

  41. Trongsatitkul T, Budhlall BM (2009) Synthesis of thermoresponsive copolymers of poly(ethylene glycol) and poly(N-isopropyl acrylamide) for cell encapsulation. In: MRS Proceedings 2009:1134–BB08–46

  42. Tang S, Floy M, Bhandari R, Dziubla T, Hilt JZ (2017) Development of novel N-isopropylacrylamide (NIPAAm) based hydrogels with varying content of chrysin multiacrylate. Gels 3:40

    Article  PubMed Central  PubMed  Google Scholar 

  43. Karewicz A, Zasada K, Szczubiałka K, Zapotoczny S, Lach R, Nowakowska M (2010) Smart alginate–hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 385:163–169

    Article  CAS  PubMed  Google Scholar 

  44. Hanlan J, Skoog DA, West DM (1973) Principles of instrumental analysis. Stud Conserv. https://doi.org/10.2307/1505543

    Article  Google Scholar 

  45. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93:260–262

    Article  CAS  Google Scholar 

  46. Shao X, Sun H, Zhou R, Zhao B, Shi J, Jiang R, Dong Y (2020) Effect of bovine bone collagen and nano-TiO2 on the properties of hydroxypropyl methylcellulose films. Int J Biol Macromol 158:937–944

    Article  CAS  PubMed  Google Scholar 

  47. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  CAS  PubMed  Google Scholar 

  48. Shaik MR, Alam M, Alandis NM (2015) Development of castor oil based poly (urethane-esteramide)/TiO2 nanocomposites as anticorrosive and antimicrobial coatings. J Nanomater 16:176

    Google Scholar 

  49. Hussein EM, Desoky WM, Hanafy MF, Guirguis OW (2021) Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites. J Phys Chem Solids 152:109983

    Article  CAS  Google Scholar 

  50. Shaari N, Kamarudin SK, Zakaria Z (2019) Potential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC application. Int J Energy Res 43(14):8057–8069

    CAS  Google Scholar 

  51. Alghamdi HM, Rajeh A (2022) Synthesis of carbon nanotubes/titanium dioxide and study of its effect on the optical, dielectric, and mechanical properties of polyvinyl alcohol/sodium alginate for energy storage devices. Int J Energy Res 46:20050–20066

    Article  CAS  Google Scholar 

  52. Hasanin MS, El-Sakhawy M, Ahmed HY, Kamel S (2022) Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5-fluorouracil. Biotechnol J 17:2100183

    Article  CAS  Google Scholar 

  53. Sundarrajan P, Eswaran P, Marimuthu A, Subhadra LB, Kannaiyan P (2012) One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull Korean Chem Soc 33:3218–3224

    Article  CAS  Google Scholar 

  54. Zhao J, Yao L, Nie S, Xu Y (2021) Low-viscosity sodium alginate combined with TiO2 nanoparticles for improving neuroblastoma treatment. Int J Biol Macromol 167:921–933

    Article  CAS  PubMed  Google Scholar 

  55. Sillanpää M, Paunu T-M, Sainio P (2011) Aggregation and deposition of engineered TiO2 nanoparticles in natural fresh and brackish waters. J Phys Conf Ser 304:012018

    Article  Google Scholar 

  56. Zhou JJ, Wang SY, Gunasekaran S (2009) Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J Food Sci 74:50–56

    Article  Google Scholar 

  57. Li Y, Jiang Y, Liu F, Ren F, Zhao G, Leng X (2011) Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocoll 25:1098–1104

    Article  CAS  Google Scholar 

  58. Termonia Y (1990) Tensile strength of discontinuous fibre-reinforced composites. J Mater Sci 25:4644–4653

    Article  CAS  Google Scholar 

  59. Ren J, Wang S, Gao C, Chen X, Li W, Peng F (2015) PVA/xylan composite films containing TiO2 with improved mechanical properties, high hydrophobicity, and UV protection performance. Cellulose 22:593–602

    Article  CAS  Google Scholar 

  60. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    Article  CAS  PubMed  Google Scholar 

  61. Roger S, Talbot D, Bee A (2006) Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. J Magn Magn Mater 305:221–227

    Article  CAS  Google Scholar 

  62. Liu C, Xiong H, Chen X, Lin S, Tu Y (2015) Effects of nano-TiO2 on the performance of high-amylose starch based antibacterial films. J Appl Polym Sci 132:42339–42345

    Article  Google Scholar 

  63. Zolfi M, Khodaiyan F, Mousavi M, Hashemi M (2014) Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. Int J Biol Macromol 65:340–345

    Article  CAS  PubMed  Google Scholar 

  64. Naik K, Chandran VG, Rajashekaran R, Waigaonkar S, Kowshik M (2016) Mechanical properties, biological behaviour and drug release capability of nano TiO2-HAp-Alginate composite scaffolds for potential application as bone implant material. J Biomater Appl 31:387–399

    Article  CAS  PubMed  Google Scholar 

  65. Hanafy MS, Desoky WM, Hussein EM, El-Shaer NH, Gomaa M, Gamal AA, Esawy MA, Guirguis OW (2021) Biological applications study of bio-nanocomposites based on chitosan/TiO2 nanoparticles polymeric films modified by oleic acid. J Biomed Mater Res 109:232–247

    Article  CAS  Google Scholar 

  66. Berkkan A, Kondolot Solak E, Asman G (2021) Starch-based membranes for controlled release of 5-fluorouracil in vitro. Chem Sel 6:5678–5684

    CAS  Google Scholar 

  67. Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem 197:864–871

    Article  CAS  PubMed  Google Scholar 

  68. Zhou T, Li J, Liu P (2018) Ionically crosslinked alginate-based nanohydrogels for tumor-specific intracellular triggered release: effect of chemical modification. Colloids Surf A 553:180–186

    Article  CAS  Google Scholar 

  69. Otitoju TA, Ahmadipour M, Li S, Shoparwe NF, Jie LX, Owolabi AL (2020) Influence of nanoparticle type on the performance of nanocomposite membranes for wastewater treatment. J Water Proc Eng 36:101356

    Article  Google Scholar 

  70. Sanli O, Kahraman A, Kondolot Solak E, Olukman M (2016) Preparation of magnetite-chitosan/methylcellulose nanospheres by entrapment and adsorption techniques for targeting the anti-cancer drug 5-fluorouracil. Artif Cell Nanomed B 44:950–959

    CAS  Google Scholar 

  71. Shahzad A, Khan A, Afzal Z, Umer MF, Khan J, Khan GM (2019) Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings. Int J Biol Macromol 124:255–269

    Article  CAS  PubMed  Google Scholar 

  72. Fe RN, Filho M, Vasconcelos NF, Rosa MF, Vieir RS (2020) Papain immobilized on alginate membrane for wound dressing application. Colloid Surf B 194:111222

    Article  Google Scholar 

  73. Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülşen Taşkın Çakıcı.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Ethical approval

The author declares that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşkın Çakıcı, G. Nano TiO2-doped sodium alginate/hydroxypropyl methylcellulose synthesis of bionanocomposite membrane and its use in controlled release of anti-cancer drug 5-fluorouracil. Polym. Bull. 80, 12719–12740 (2023). https://doi.org/10.1007/s00289-023-04674-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04674-z

Keywords

Navigation