Skip to main content
Log in

Enhanced thermal and structural properties of UHMWPE/CNT nanocomposite sheets prepared by using melt compounding technique

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study thermal and structural properties characterization were performed for prepared ultra-high molecular weight polyethylene/carbon nanotube (UHMWPE/CNT) nanocomposite sheets by using a melt compounding method. The sheets were prepared by using six types of CNTs; pristine single walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs), oxidized- SWCNT and MWCNT, and amide- SWCNT and MWCNT. Thermogravimetric analysis results revealed that the addition of CNTs increased the nanocomposites thermal stability (17 °C) being produced by P-MWCNT. Differential scanning calorimetry and x-ray diffraction (XRD) results show no significant crystalline structure changes compared with the pure polymer, and increase in crystallinity (4%) for O-SWCNTs additions (4%). Scanning electron microscope images showed improved bridging in the polymer matrix by using oxidized and functionalized CNTs compared with pristine CNTs. These findings suggest that the durability of UHMWPE is enhanced by this nano-modification method, improving its suitability for many lightweight, high strength material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger L, Kausch HH, Plummer CJG (2003) Structure and deformation mechanisms in UHMWPE fibers. J Polym 44:5844–5877

    Article  Google Scholar 

  2. Ohta Y, Muruse H, Hashimoto T (2010) Structural development of ultra-high strength polyethylene fibers: transformation from kebabs to shishs through hot-drawing process of gel-spun fibers. J Polym Sci B Polym Phys 48:186–1872

    Article  Google Scholar 

  3. Tenison N, Baena JC, Yu J, Peng ZX (2017) Development of mixing methods of UHMWPE/carbon nanotubes (CNT) composites for use in artificial joints. Key Eng Mater 739:81–86

    Article  Google Scholar 

  4. Ahmed M, Wahit M, Abdul Kadir M, Zaman K (2012) Mechanical, rheological and bioactivity properties of ultra high molecular weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite. Sci World J 474851:13

    Google Scholar 

  5. Zoo YS, An JW, Lim DP, Lim DS (2004) Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol Lett 16:305–309

    Article  CAS  Google Scholar 

  6. Yin X, Li S, He G, Fing Y, Wen J (2018) Preparation and characterization of CNT/UHMWPE nanocomposites via a novel mixer under synergy of ultrasonic wave and extensional deformation. Ultrason Sonochem 43:15–22

    Article  CAS  PubMed  Google Scholar 

  7. Czigany T, Deak T (2012) Preparation and manufacturing techniqes for macro- and microcomposites. In: Thomas S, Kuruvilla J, Malhotra SK, Goda K, Sreekala MS (eds) Polymer composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 111–134

    Chapter  Google Scholar 

  8. Hashimoto M, Takadama H, Mizuno M, Yasutomi Y, Kokubo T (2003) Titanium dioxide/ultra high molecular weight polyethylene composite for bone repairing applications: preparation and biocompatibility. Key Eng Mater 240:415–418

    Article  Google Scholar 

  9. Hu D, Zhang Y, Shen Z, Cai Q (2017) Investigation on the ballistic behavior of mosaic sic/UHMWPE composite armor systems. Ceram Int 43:10368–10376

    Article  CAS  Google Scholar 

  10. Ma T, Zhang T, Gao PG, Zhang JC (2013) Synthesis and properties of ultrahigh molecular weight polyethylene/WS2 nanoparticles fiber for bullet-proff materials. Chin Sci Bull 58:945–948

    Article  CAS  Google Scholar 

  11. Ho WK, Koo JH, Ezekoye OA (2010) Thermoplastic polyurethane elastomer nanocomposites: morphology, termophysical, and flammability properties. J Nanomate. https://doi.org/10.1155/2010/583234,2010

    Article  Google Scholar 

  12. Rahmat M, Hubert P (2011) Carbon nanotube-polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84

    Article  CAS  Google Scholar 

  13. Yang YK, China PR, Xie XL, China YW, Mai YW (2011) Functionalization of carbon nanotubes for polymer nanocomposites. In: McNally T, Potschke P (eds) Polymer-carbon nanotube composites preparation, properties and application, 1st edn. Woodhead Publishing Limited, Oxford, pp 55–84

    Google Scholar 

  14. Fonseca MA, Subramani K, Oliveira MSA, Simoes JA (2011) Enhanced UHMWPE reinforced with MWCNT through mechanical ball-milling. Defect Diffus Forum 312:1238–1243

    Article  Google Scholar 

  15. Maksimkin AV, Kaloshkin SD, Kaloshkina MS, Gorshenkov MV, Tcherdyntsev VV, Ergin KS, Shchetinin IV (2012) Ultra-high molecular weight polyethylene reinforced with multi-walled carbon nanotubes: fabrication method and properties. J Alloys Compd 536:538–540

    Article  Google Scholar 

  16. Guo C, Sun F, Ling R, Yao J, Zhang Z, Zhang G (2016) Crystallization and stress relaxation behaviors of UHMWPE/CNT fibers. J Vinyl Addit Technol 24:229–232

    Article  Google Scholar 

  17. Lee JH, Kathi J, Rhee KY, Lee JH (2010) Wear properties of 3-aminopropyltriethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym Eng Sci 50:1433–1439

    Article  CAS  Google Scholar 

  18. Andrews R, Jacques D, Minot MRT (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  19. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779–2785

    Article  CAS  Google Scholar 

  20. Bakshi SR, Tercero JE, Agarwal A (2007) Synthesis and characterization of multiwalled carbon nanotubes reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Compos Part A Appl Sci Manuf 38:2493–2499

    Article  Google Scholar 

  21. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077

    Article  CAS  Google Scholar 

  22. Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522

    Article  CAS  Google Scholar 

  23. Li QW, Yan H, Ye YC, Zhang J, Liu ZF (2002) Defect location of individual single-walled carbon nanotubes with a thermal oxidation strategy. J Phys Chem Part B 106:11085–11088

    Article  CAS  Google Scholar 

  24. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Article  CAS  Google Scholar 

  25. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (20008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46: 833–840.

  26. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by raman spectroscopy. J Raman Spec 38:728–736

    Article  CAS  Google Scholar 

  27. Bozeya A (2018) The effect of carbon nanotubes functionalization on structure and properties of polymer/carbon nanotube nanocomposites. PhD Thesis, The University of Jordan, Jordan

  28. Bozeya A, Makableh YF, Abu-Zurayk R, Khalaf A, Al Bawab A (2021) Thermal and structural properties of high density polyethylene/carbon nanotube nanocomposites: a comparison study. Chemosensors (Special Issue “Nanomaterials Based on Bio/Chemical Sensors”) 9:136

    CAS  Google Scholar 

  29. Yang DQ, Sacher E (2008) Strongly enhanced interaction between evaporated Pt nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: effects of physical and chemical defects. J Phy Chem Part C 112:4075–4082

    Article  CAS  Google Scholar 

  30. Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets. Carbon 47:2174–2185

    Article  CAS  Google Scholar 

  31. Kukovecz Á, Kozma G, Kónya Z (2013) Multi-walled carbon nanotubes. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, pp 147–188

    Chapter  Google Scholar 

  32. Zhang X, Sreekumar TV, Liu T, Kumar S (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem 108:16435–16440

    Article  CAS  Google Scholar 

  33. Chiang Y, Lin W, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3. Oxidation. App Sur Sci 257:2401

    Article  CAS  Google Scholar 

  34. Babaei A, Ghaffarian SR, Khorasani MM, Abdolrasouli MH (2014) Thermal and mechanical properties of ultra high molecular weight polyethylene fiber reinforced high-density polyethylene homocomposites: effect of processing condition and nanoclay addition. J Macromol Sci B 53:829–847

    Article  CAS  Google Scholar 

  35. Mahfuz H, Khan MR, Leventouri T, Liarokapis E (2011) Investigation of MWCNT reinforcement on the strain hardening behavior of ultrahigh molecular weight polyethylene. J Nanotechnol. https://doi.org/10.1155/2011/637395

    Article  Google Scholar 

  36. Gu J, Yu H, Wu C (2014) Thermal and crystallization properties of HDPE and HDPE/PP blends modified with DCP. Adv Polym Tech 33:1–5

    Article  Google Scholar 

  37. Khonakdar HA, Jafari SH, Taheri M, Wagenknecht U, Jehnichen D, Haussler L (2006) Thermal and wide angle X-ray analysis of chemically and radiation-crosslinked low and high density polyethylenes. J Appl Poly 100:3264–3271

    Article  CAS  Google Scholar 

  38. Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M (2006) Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci B Phys 45:231–245

    Article  CAS  Google Scholar 

  39. Hulsey S, Absar S, Sultan QN, Sabet SM, Mahfuz H, Khan M (2018) Synthesis and characterization of UHMWPE nanocomposite fibers containing carbon nanotubes coated with a PVP surfactant layer. Polym Compos 39:1025–1033

    Article  Google Scholar 

  40. Ingham B, Toney MF (2014) X-ray diffraction for characterizing metallic films. In: Barmak K, Coffey K (eds) Metallic films for electronic, optical and magnetic applications. Woodhead Publishing Limited, p 3

    Chapter  Google Scholar 

  41. Menczel JD, Judovits L, Prime R B, Bair H E, Reading M, Swier S (2012) Thermal analysis of polymers fundamentals and applications. In: Menczel JD, Prime RB (eds). John Wiley & Sons, Inc., Hoboken, p 241

  42. Kanai Y, Khalap VR, Collins PG, Grossman JC (2010) Atomistic oxidation mechanism of a carbon nanotube in nitric acid. Phys Rev 104:066401

    Google Scholar 

Download references

Funding

This research was funded by “King Abdullah II Design and Development Bureau” and the “Deanship of academic research (DAR)/ The University of Jordan”, Amman, Jordan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AAB and RAZ; methodology, AB; formal analysis, RAZ and AB; investigation, AAB and RAZ; resources, YM; data curation, AK and AB; writing—original draft preparation, AB; writing—review and editing, YM, RAZ, AK and AAB; visualization, RAZ and YM; supervision, AAB and RAZ; project administration, AAB, RAZ and YM; funding acquisition, YM and AAB. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Abeer Al Bawab or Rund Abu-Zurayk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Bawab, A., Bozeya, A., Makableh, Y.F. et al. Enhanced thermal and structural properties of UHMWPE/CNT nanocomposite sheets prepared by using melt compounding technique. Polym. Bull. 80, 12433–12445 (2023). https://doi.org/10.1007/s00289-022-04645-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04645-w

Keywords

Navigation